Skip to main content

SPHERE: A Sensor Platform for Healthcare in a Residential Environment

  • Chapter
  • First Online:
Designing, Developing, and Facilitating Smart Cities

Abstract

It can be tempting to think about smart homes like one thinks about smart cities. On the surface, smart homes and smart cities comprise coherent systems enabled by similar sensing and interactive technologies. It can also be argued that both are broadly underpinned by shared goals of sustainable development, inclusive user engagement and improved service delivery. However, the home possesses unique characteristics that must be considered in order to develop effective smart home systems that are adopted in the real world [37].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.asus.com/3D-Sensor/Xtion/.

  2. 2.

    http://www.i3du.gr/pdf/primesense.pdf.

  3. 3.

    http://reframe-d2k.org/.

  4. 4.

    http://reframe-d2k.org/Challenge.

  5. 5.

    http://www.gelighting.com.

  6. 6.

    http://www.lighting.philips.co.uk/systems/themes/led-based-indoor-positioning.html.

References

  1. Allen FR, Ambikairajah E, Lovell NH, Celler BG (2006) Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models. Physiol Meas 2006:935

    Article  Google Scholar 

  2. Atallah,L, Lo B, Ali R, King R, Yang G-Z (2009) Real-time activity classification using ambient and wearable sensors. IEEE Trans Inf Technol Biomed Publ IEEE Eng Med Biol Soc 13(6), 1031–1039

    Google Scholar 

  3. Berger JO (1993) Statistical decision theory and Bayesian analysis, 2nd edn. Springer-Verlag, New York, p 1993

    Google Scholar 

  4. Bernardo JM, Smith AFM (2008) Bayesian Theory. John Wiley & Sons, Hoboken, NJ, p 2008

    Google Scholar 

  5. Bian X, Abowd GD, Rehg JM (2005) Using sound source localization in a home environment

    Google Scholar 

  6. Bishop CM (2013) Model-based machine learning. Phil Trans R Soc A

    Google Scholar 

  7. Bose A, Foh CH (2007) A practical path loss model for indoor WiFi positioning enhancement. Inf Commun Signal Process

    Google Scholar 

  8. Brugman H, Russel A (2004) Annotating multi-media/multi-modal resources with ELAN. In: Proceedings of the 4th International Conference on Language Resources and Language Evaluation (LREC 2004). Lisbon, 2004, pp 2065–2068

    Google Scholar 

  9. Brush AJ, Lee B, Mahajan R, Agarwal S, Saroiu S, Dixon C (2011) Home automation in the wild: challenges and opportunities. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2115–2124. ACM

    Google Scholar 

  10. Burrows A, Gooberman-Hill R, Coyle D (2015) Empirically derived user attributes for the design of home healthcare technologies. Pers Ubiquit Comput 19(8):1233–1245

    Article  Google Scholar 

  11. Coifman RR, Lafon S (2006) Diffusion maps. Appl Comput Harmon Anal 5–30, (Elsevier)

    Google Scholar 

  12. Diethe T, Twomey N, Flach P (2016) Active transfer learning for activity recognition. In: 24th European Symposium on Artificial Neural Networks. Bruges: ESANN

    Google Scholar 

  13. Diethe T, Twomey N, Flach P (2015) Bayesian modelling of the temporal aspects of smart home activity with circular statistics. Mach Learn Knowl Discov Databases, 279–294. Springer International Publishing, Porto

    Google Scholar 

  14. Exel R (2012) Receiver design for time‐based ranging with IEEE 802.11b signals. Int J Navig Obs

    Google Scholar 

  15. Fafoutis X, Janko B, Mellios E, Hilton G, Sherratt S, Piechocki R, Craddock I (2016) SPW-1: a low-maintenance wearable activity tracker for residential monitoring and healthcare applications. Int Conf Wearables Healthc (HealthWear). EAI

    Google Scholar 

  16. Fafoutis X, Mellios E, Twomey N, Diethe T, Hilton G, Piechocki R (2015) An RSSI-based wall prediction model for residential floor map construction. In: Proceedings of the 2nd IEEE World Forum on Internet of Things (WF-IoT). IEEE

    Google Scholar 

  17. Fafoutis X, Tsimbalo E, Mellios E, Hilton G, Piechocki R, Craddock I (2016) A residential maintenance-free long-term activity monitoring system for healthcare applications. EURASIP J Wirel Commun Netw 2016, 23

    Google Scholar 

  18. Flach PA, Kull M (2015) Precision-recall-gain curves: PR analysis done right. In: Proceedings of the Twenty-Ninth Annual Conference on Neural Information Processing Systems. NIPS

    Google Scholar 

  19. Fontana RJ, Gunderson SJ (2002) Ultra-wideband precision asset location system. Ultra Wideband Systems and Technologies, Baltimore

    Book  Google Scholar 

  20. Günther A, Hoene C (2005) Measuring round trip times to determine the distance between WLAN nodes

    Google Scholar 

  21. Gelman A, Carlin JB, Stern HS, Rubin DB (2013) Bayesian data analysis, 3rd edn. Chapman and Hall, London

    MATH  Google Scholar 

  22. Gerber S, Tasdizen T, Whitaker R (2007). Robust non-linear dimensionality reduction using successive 1-dimensional Laplacian eigenmaps. In: Proceedings 24th International Conference on Machine learning, pp 281–288. ACM

    Google Scholar 

  23. Harle R (2013) A survey of indoor inertial positioning systems for pedestrians. IEEE Commun Surv Tutor 15(3):1281–1293

    Article  Google Scholar 

  24. José H-O et al, Reframing in context: a methodology for model reuse in machine learning. AICOM, (in press)

    Google Scholar 

  25. Hernández-Orallo José, Flach Peter, Ferri Cèsar (2012) A unified view of performance metrics: translating threshold choice into expected classification loss. J Mach Learn Res 13(1):2813–2869

    MathSciNet  MATH  Google Scholar 

  26. Hoque E, Stankovic J (2012) AALO: Activity recognition in smart homes using Active Learning in the presence of Overlapped activities. In: Proceedings of the 6th International Conference on Pervasive Computing Technologies for Healthcare. IEEE, pp 139–146

    Google Scholar 

  27. Hui SY (2013) Planar wireless charging technology for portable electronic products and Qi. Proc IEEE 101(6):1290–1301

    Article  Google Scholar 

  28. Kim E, Helal S, Cook D (2010) Human activity recognition and pattern discovery. Pervasive Comput. 48–53

    Google Scholar 

  29. Kipp M (2012) Annotation facilities for the reliable analysis of human motion. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC). Istanbul, pp 4103–4107

    Google Scholar 

  30. Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT Press, Cambridge, Massachusetts

    MATH  Google Scholar 

  31. Lao L (2006) Location-based activity recognition. University of Washington

    Google Scholar 

  32. Logan B, Healey J, Philipose M, Tapia EM, Intille S (2007) A long-term evaluation of sensing modalities for activity recognition. In: Proceedings of the 9th International Conference on Ubiquitous Computing (UbiComp’07). Berlin: Springer-Verlag, pp 483–500

    Google Scholar 

  33. Longstaff B, Reddy S, Estrin D (2010) Improving activity classification for health applications on mobile devices using active and semi-supervised learning. In: 2010 4th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), NO PERMISSIONS. IEEE, pp 1–7

    Google Scholar 

  34. Ciurana M, Barcelo‐Arroyo F, Izquierdo F (2007) A ranging system with IEEE 802.11 data frames. In: IEEE Radio and Wireless Symposium. Long Beach

    Google Scholar 

  35. Maurer U, Smailagic A, Siewiorek DP, Deisher M (2006) Activity recognition and monitoring using multiple sensors on different body positions. Wearable Implant Body Sensor Netw. IEEE, Massachuset, pp 113–116

    Google Scholar 

  36. Mennicken S, Huang EM (2012) Hacking the natural habitat: an in-the-wild study of smart homes, their development, and the people who live in them. Pervasive Computing. Springer Berlin Heidelberg, pp 143–160

    Google Scholar 

  37. Mennicken S, Vermeulen J, Huang EM (2014) From today’s augmented houses to tomorrow’s smart homes: new directions for home automation research. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, pp 105–115

    Google Scholar 

  38. Munaro M, Menegatti E (2014) Fast RGB-D people tracking for service robots. Auton Robots, pp 1–16

    Google Scholar 

  39. Murphy Allan H, Winkler Robert L (1984) Probability forecasting in meteorology. J Am Stat Assoc 79:489–500

    Google Scholar 

  40. Narayana S, Prasad RV, Rao VS, Prabhakar TV, Kowshik SS, Iyer MS (2015) PIR Sensors: Characterization and Novel Localization Technique

    Google Scholar 

  41. Obayashi S, Zander J (1998) A body-shadowing model for indoor radio communication environments. IEEE Trans Antennas Propag 46(6):920–927

    Article  Google Scholar 

  42. Pärkkä Juha, Ermes Miikka, Korpipää Panu, Mäntyjärvi Jani, Peltola Johannes, Korhonen Ilkka (2006) Activity classification using realistic data from wearable sensors. IEEE Trans Inf Technol Biomed 10(1):119–128

    Article  Google Scholar 

  43. Paiement A, Tao L, Camplani M, Hannuna S, Damen D, Mirmehdi M (2014) Online quality assessment of human motion from skeleton data. In: Proceedings British Machine Vision Conference 2014

    Google Scholar 

  44. Roggen D et al (2010) Collecting complex activity datasets in highly rich networked sensor environments. In: 2010 Seventh International Conference on Networked Sensing Systems (INSS). IEEE, pp 233–240

    Google Scholar 

  45. Sahinoglu Z, Gezici S, Guvenc I (2008) Ultra‐wideband positioning systems

    Google Scholar 

  46. Tan B (2015) Wi‐Fi based passive human motion sensing for in‐home healthcare applications. In: IEEE 2nd World Forum on Internet of Things. Milan

    Google Scholar 

  47. Tan B, Woodbridge K, Chetty K (2014) A real‐time high resolution passive WiFi Doppler‐radar and its applications. In: International Radar Conference. Lille

    Google Scholar 

  48. Tsimbalo E, Fafoutis X, Mellios E, Haghighi M, Tan B, Hilton G, Piechocki G, Craddock I (2015) Mitigating Packet Loss in Connectionless Bluetooth Low Energy. In: 2nd IEEE World Forum on Internet of Things (WF-IoT). Milan: IEEE. pp 291–296

    Google Scholar 

  49. Tsipouras MG, Tzallas AT, Rigas G, Tsouli S, Fotiadis DI, Konitsiotis S () An automated methodology for levodopa-induced dyskinesia: assessment based on gyroscope and accelerometer signals. Artif Intell Med 127–135. Elsevier

    Google Scholar 

  50. Twomey N, Diethe T, Flach P (2016) Unsupervised learning of sensor topologies for improving activity recognition in smart environments. Neurocomputing

    Google Scholar 

  51. Twomey N, Flach P (2014) Context modulation of sensor data applied to activity recognition in smart homes. In: Workshop on Learning over Multiple Contexts, European Conference on Machine Learning (ECML’14). Nancy, France

    Google Scholar 

  52. van Kasteren T, Noulas A, Englebienne G, Kröse B (2008) Accurate activity recognition in a home setting. In: 10th International Conference on Ubiquitous Computing—UbiComp’08. New York: ACM Press, pp 1–9

    Google Scholar 

  53. Wang, Y, Yang X, Zhao Y, Liu Y, Cuthbert L (2013) Bluetooth positioning using RSSI and triangulation methods. Las Vegas

    Google Scholar 

  54. Winn John, Bishop Christopher M, Diethe Tom R (2015) Model-based machine learning. Microsoft Research, Cambridge, p 2015

    Google Scholar 

  55. Woodman, O, Harle R (2008) Pedestrian localisation for indoor environments. In: Proceedings of the 10th International Conference on Ubiquitous Computing (UbiComp’08)

    Google Scholar 

  56. Woznowski P, et al (2015) A multi-modal sensor infrastructure for healthcare in a residential environment. In: IEEE ICC Workshop on ICT-enabled services and technologies for eHealth and AAL. London: IEEE, pp 271–277

    Google Scholar 

  57. Tsai Y-L, Tu T-T, Bae H, Chou PH (2010) EcoIMU: a dual triaxial-accelerometer inertial measurement unit for wearable applications. 2010 International Conference on Body Sensor Networks (BSN), Singapore

    Google Scholar 

  58. Zhu, Ni, et al. “Bridging e-Health and the Internet of Things: The SPHERE Project.” Intelligent Systems, IEEE (IEEE), 2015: 39–46

    Google Scholar 

Download references

Acknowledgement

This work was performed under the SPHERE IRC, funded by the UK Engineering and Physical Sciences Research Council (EPSRC), Grant EP/K031910/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemyslaw Woznowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Woznowski, P. et al. (2017). SPHERE: A Sensor Platform for Healthcare in a Residential Environment. In: Angelakis, V., Tragos, E., Pöhls, H., Kapovits, A., Bassi, A. (eds) Designing, Developing, and Facilitating Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-319-44924-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44924-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44922-7

  • Online ISBN: 978-3-319-44924-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics