Advertisement

Traffic Management for Smart Cities

  • Andreas Allström
  • Jaume Barceló
  • Joakim EkströmEmail author
  • Ellen Grumert
  • David Gundlegård
  • Clas Rydergren
Chapter

Abstract

Smart cities, participatory sensing as well as location data available in communication systems and social networks generates a vast amount of heterogeneous mobility data that can be used for traffic management . This chapter gives an overview of the different data sources and their characteristics and describes a framework for utilizing the various sources efficiently in the context of traffic management. Furthermore, different types of traffic models and algorithms are related to both the different data sources as well as some key functionalities of active traffic management, for example, short-term prediction and control.

Keywords

Traffic management Traffic control Traffic information Traffic data Traffic prediction Online OD estimation 

References

  1. 1.
    Aboudolas K, Geroliminis N (2013) Perimeter and boundary flow control in multi-reservoir heterogeneous networks. Transp Res Part B 55:265–281. doi: 10.1016/j.trb.2013.07.003 CrossRefGoogle Scholar
  2. 2.
    Alexiadis V, Sallman D, Armstrong A (2012) Traffic analysis toolbox volume XIII: integrated corridor management analysis, modeling, and simulation guide. FHWA-JPO-12-074. Federal Highway AdministrationGoogle Scholar
  3. 3.
    Allström A, Ekströ J, Gundlegård D, Ringdahl R, Rydergren C, Bayen AM, Patire AD (2016) A hybrid approach for short-term traffic state and travel time prediction on highways. Transp Res Rec: J Transp Res Board 2554. doi: 10.3141/2554-07
  4. 4.
    Antoniou C, Barceló J, Breen M, Bullejos M, Casas J, Cipriani E, Ciuffo B, Djukic T, Hoogendoorn S, Marzano V, Montero L, Nigro M, Perarnau J, Punzo V, Toledo T, van Lint H (2016) Towards a generic benchmarking platform for origin-destination flows estimation/updating algorithms: design, demonstration and validation. Transp Res Part C 66:79–98. doi: 10.1016/j.trc.2015.08.009
  5. 5.
    Antoniou C, Ben-Akiva M, Koutsopoulos HN (2010) Kalman filter applications for traffic management. In: Krodić V (ed) Kalman Filter. INTECHGoogle Scholar
  6. 6.
    Bachmann C, Abdulhai B, Roorda MJ, Moshiri B (2013) A comparative assessment of multi-sensor data fusion techniques for freeway traffic speed estimation using microsimulation modeling. Transp Res Part C 26:33–48. doi: 10.1016/j.trc.2012.07.003 CrossRefGoogle Scholar
  7. 7.
    Bar-Gera H (2007) Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study from Israel. Transp Res Part C 15(6):380–391. doi: 10.1016/j.trc.2007.06.003 CrossRefGoogle Scholar
  8. 8.
    Barceló J (2010) Models, traffic models, simulation, and traffic simulation. In: Barceló J (ed) Fundamentals of traffic simulation. Springer, New York, NY, pp 1–62CrossRefGoogle Scholar
  9. 9.
    Barceló J, Gilliéron F, Linares M, Serch O, Montero L (2012) Exploring link covering and node covering formulations of detection layout problem. Transp Res Rec: J Transp Res Board 2308:17–26. doi: 10.3141/2308-03 CrossRefGoogle Scholar
  10. 10.
    Barceló J, Montero L, Bullejos M, Linares M (2014) A practical proposal for using origin-destination matrices in the analysis, modeling and simulation for traffic management. In: 93rd TRB annual meeting compendium of papers, 14-3793Google Scholar
  11. 11.
    Barceló J, Montero L, Bullejos M, Linares M, Serch O (2013) Robustness and computational efficiency of Kalman filter estimator of time-dependent origin-destination matrices. Transp Res Rec: J Transp Res Board 2344:31–39. doi: 10.3141/2344-04
  12. 12.
    Barceló J, Montero L, Bullejos M, Serch O, Carmona C (2013) A Kalman filter approach for exploiting bluetooth traffic data when estimating time-dependent OD matrices. J Intell Transp Syst 17(2):123–141. doi: 10.1080/15472450.2013.764793
  13. 13.
    Barceló J, Montero L, Marqués L, Carmona C (2010) A Kalman-filter approach for dynamic OD estimation in corridors based on bluetooth and wi-fi data collection. In: Proceedings of the 12th WCTR. Lisabon, PortugalGoogle Scholar
  14. 14.
    Bayen A, Butler J, Patire A (2011) Mobile Millennium final report. Institute of Transportation Studies, University of California, Berkeley, California Center for Innovative TransportationGoogle Scholar
  15. 15.
    Blondel VD, de Cordes N, Decuyper A, Deville P, Raguenez J, Smoreda Z (2013) Mobile phone data for development-analysis of mobile phone datasets for the development of Ivory CoastGoogle Scholar
  16. 16.
    Boero M (1999) Case studies of systems: the KITS model. Workshop on intelligent traffic models. Delft University, ERUDITGoogle Scholar
  17. 17.
    Boero M, Kirschfink H (1999) Case studies of systems: the ENTERPRICE model. Workshop on intelligent traffic models. Delft University, ERUDITGoogle Scholar
  18. 18.
    Bogenberger K, May AD (1999) Advanced coordinated traffic responsive ramp metering strategies. PATH working paper, vol iii, no 2Google Scholar
  19. 19.
    Bullejos M, Barceló J, Montero L (2014) A DUE based bilevel optimization approach for the estimation of time sliced OD matrices. In: Proceeding of international symposium of transport simulation 2014Google Scholar
  20. 20.
    Byon YJ, Shalaby A, Abdulhai B, El-Tantawy S (2010) Traffic data fusion using SCAAT Kalman filters. In: Proceedings of the transportation research board 89th annual meetingGoogle Scholar
  21. 21.
    Caceres N, Wideberg JP, Benitez FG (2007) Deriving origin destination data from a mobile phone network. IET Intell Transp Syst 1(1):15–26. doi: 10.1049/iet-its:20060020 CrossRefGoogle Scholar
  22. 22.
    Calabrese F, Diao M, Di Lorenzo G, Ferreira J Jr, Ratti C (2013) Understanding individual mobility patterns from urban sensing data: a mobile phone trace example. Transp Res Part C 26:301–313. doi: 10.1016/j.trc.2012.09.009
  23. 23.
    Cantelmo G, Cipriani E, Gemma A, Nigro M (2014) An adaptive bi-level gradient procedure for the estimation of dynamic traffic demand. IEEE Trans Intell Transp Syst 15(3):1348–1361. doi: 10.1109/TITS.2014.2299734 CrossRefGoogle Scholar
  24. 24.
    Carlson R, Papamichail I, Papageorgiou M (2011) Local feedback-based mainstream traffic flow control on motorways using variable speed limits. IEEE Trans Intell Transp Syst 12(4):1261–1276CrossRefGoogle Scholar
  25. 25.
    Carlson RC, Papamichail I, Papageorgiou M (2014) Integrated feedback ramp metering and mainstream traffic flow control on motorways using variable speed limits. Transp Res Part C 46:209–221. doi: 10.1016/j.trc.2014.05.017 CrossRefGoogle Scholar
  26. 26.
    Chiu YC, Bottom J, Mahut M, Paz A, Balakrishna R, Waller T, Hicks J (2011) Dynamic traffic assignment: a primer. Transp Res E-Circ E-C153Google Scholar
  27. 27.
    Chung K, Rudjanakanoknad J, Cassidy MJ (2007) Relation between traffic density and capacity drop at three freeway bottlenecks. Transp Res Part B 41:82–95CrossRefGoogle Scholar
  28. 28.
    Cipriani E, Florian M, Mahut M, Nigro M (2011) A gradient approximation approach for adjusting temporal origin-destination matrices. Transp Res Part C 19(2):270–282. doi: 10.1016/j.trc.2010.05.013. Emerging theories in traffic and transportation and methods for transportation planning and operations
  29. 29.
    Cuena J, Hernández J, Molina M (1995) Knowledge-based models for adaptive traffic management systems. Transp Res Part C 3(5):311–337. doi: 10.1016/0968-090X(95)00013-9 CrossRefGoogle Scholar
  30. 30.
    Daganzo CF (1994) The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp Res Part B 28(4):269–287. doi: 10.1016/0191-2615(94)90002-7 CrossRefGoogle Scholar
  31. 31.
    Daganzo CF (2007) Urban gridlock: macroscopic modeling and mitigation approaches. Transp Res Part B 41(1):49–62. doi: 10.1016/j.trb.2006.03.001 MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ekström J, Engelson L, Rydergren C (2014) Optimal toll locations and toll levels in congestion pricing schemes: a case study of Stockholm. Transp Plann Technol 37(4):333–353. doi: 10.1080/03081060.2014.897129 CrossRefGoogle Scholar
  33. 33.
    Ekström J, Kristoffersson I, Quttineh NH (2016) Surrogate-based optimization of cordon toll levels in congested traffic networks. J Adv Transp doi: 10.1002/atr.1386 (Accepted)
  34. 34.
    Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367. doi: 10.1007/s10236-003-0036-9 CrossRefGoogle Scholar
  35. 35.
    Evensen G (2009) Data assimilation: the ensemble Kalman filter. Springer, Science & Business MediaGoogle Scholar
  36. 36.
    Faouzi NEE, Leung H, Kurian A (2011) Data fusion in intelligent transportation systems: progress and challenges—a survey. Inf Fusion 12(1):4–10. doi: 10.1016/j.inffus.2010.06.001. Special Issue on Intelligent Transportation Systems
  37. 37.
    García CE, Prett DM, Morari M (1989) Model predictive control: theory and practice—a survey. Automatica 25(3):335–348CrossRefzbMATHGoogle Scholar
  38. 38.
    Gayah V, Dixit V (2013) Using mobile probe data and the macroscopic fundamental diagram to estimate network densities. Transp Res Rec: J Transp Res Board 2390:76–86. doi: 10.3141/2390-09 CrossRefGoogle Scholar
  39. 39.
    Geroliminis N, Daganzo CF (2008) Existence of urban-scale macroscopic fundamental diagrams: some experimental findings. Transp Res Part B 42(9):759–770. doi: 10.1016/j.trb.2008.02.002 CrossRefGoogle Scholar
  40. 40.
    Geroliminis N, Haddad J, Ramezani M (2013) Optimal perimeter control for two urban regions with macroscopic fundamental diagrams: a model predictive approach. IEEE Trans Intell Transp Syst 14(1):348–359. doi: 10.1109/TITS.2012.2216877 CrossRefGoogle Scholar
  41. 41.
    Geroliminis N, Sun J (2011) Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transp Res Part B 45(3):605–617. doi: 10.1016/j.trb.2010.11.004 CrossRefGoogle Scholar
  42. 42.
    Goldstein N, Kumar K (1982) A decentralized control strategy for freeway regulation. Transp Res Part B 16(4):279–290. doi: 10.1016/0191-2615(82)90012-1 CrossRefGoogle Scholar
  43. 43.
    Gomes G, Horowitz R (2006) Optimal freeway ramp metering using the asymmetric cell transmission model. Transp Res Part C 14(4):244–262. doi: 10.1016/j.trc.2006.08.001 CrossRefGoogle Scholar
  44. 44.
    Grumert E, Ma X, Tapani A (2015) Analysis of a cooperative variable speed limit system using microscopic traffic simulation. Transp Res Part C 52:173–186CrossRefGoogle Scholar
  45. 45.
    Grumert E, Tapani A, Ma X (2016) Evaluation of four control algorithms used in variable speed limit systems. In: TRB 95th annual meeting compendium of papers, 16-2880. Washington, U.S.AGoogle Scholar
  46. 46.
    Gundlegård D, Allström A, Bergfeldt E, Bayen AM, Ringdahl R (2015) Travel time and point speed fusion based on a macroscopic traffic model and non-linear filtering. In: 2015 IEEE 18th international conference on intelligent transportation systems, pp 2121–2128. doi: 10.1109/ITSC.2015.343
  47. 47.
    Gundlegárd D, Karlsson JM (2006) Generating road traffic information from cellular networks—new possibilities in UMTS. In: 2006 6th International conference on ITS telecommunications, pp 1128–1133. doi: 10.1109/ITST.2006.288805
  48. 48.
    Gundlegård D, Karlsson JM (2009) Handover location accuracy for travel time estimation in GSM and UMTS. IET Intell Transp Syst 3(1):87–94. doi: 10.1049/iet-its:20070067 CrossRefGoogle Scholar
  49. 49.
    Haddad J, Geroliminis N (2012) On the stability of traffic perimeter control in two-region urban cities. Transp Res Part B 46(9):1159–1176. doi: 10.1016/j.trb.2012.04.004 CrossRefGoogle Scholar
  50. 50.
    Hadi MA (2005) Coordinated traffic responsive ramp metering strategies—an assessment based on previous studies. In: 12th World congress on intelligent transport systemsGoogle Scholar
  51. 51.
    Haghani A, Hamedi M, Sadabadi K, Young S, Tarnoff PJ (2010) Freeway travel time ground truth data collection using Bluetooth sensors. In: Proceedings of the transportation research board 89th annual meeting. Transportation Research Board, Washington DCGoogle Scholar
  52. 52.
    Hegyi A, De Schutter B, Heelendoorn J (2003) MPC-based optimal coordination of variable speed limits to suppress shock waves in freeway traffic. In: American control conference, 2003. Proceedings of the 2003, vol 5, pp 4083–4088. doi: 10.1109/ACC.2003.1240475
  53. 53.
    Hegyi A, De Schutter B, Hellendoorn J (2005) Optimal coordination of variable speed limits to suppress shock waves. IEEE Trans Intell Transp Syst 6(1):102–112CrossRefGoogle Scholar
  54. 54.
    Hegyi A, Hoogendoorn S, Schreuder M, Stoelhorst H, Viti F (2008) Specialist: a dynamic speed limit control algorithm based on shock wave theory. In: 11th International IEEE conference on intelligent transportation systems. Beijing, China, pp 827–832Google Scholar
  55. 55.
    Hegyi A, Schutter BD, Hellendoorn H (2005) Model predictive control for optimal coordination of ramp metering and variable speed limits. Transp Res Part C 13(3):185–209. doi: 10.1016/j.trc.2004.08.001 CrossRefGoogle Scholar
  56. 56.
    Herrera JC, Work DB, Herring R, Ban XJ, Jacobson Q, Bayen AM (2010) Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment. Transp Res Part C 18(4):568–583. doi: 10.1016/j.trc.2009.10.006 CrossRefGoogle Scholar
  57. 57.
    Highways Agency (2007) M25, Control motorway, summary report. Technical report. Department for Transportation, London, UKGoogle Scholar
  58. 58.
    van Hinsbergen C, van Lint J, Sanders F (2007) Short term traffic prediction models, deliverable DIIF-1a in project II-F: travel time prediction on urban networks. TU Delft and Vialis TrafficGoogle Scholar
  59. 59.
    van Hinsbergen CPI, Zuurbier FS, van Lint JWC, van Zuylen HJ (2008) Using an LWR model with a cell based extended Kalman filter to estimate travel times. In: The 3rd International symposium of transport simulation. Surfer’s Paradise, QLD, AustraliaGoogle Scholar
  60. 60.
    Hofleitner A (2012) Leveraging geolocalization technologies to model and estimate urban traffic. Ph.D. thesis. Université Paris-EstGoogle Scholar
  61. 61.
    Huang A, Rudolph L (2007) Bluetooth essentials for programmers. Cambridge University PressGoogle Scholar
  62. 62.
    Hunter T, Abbeel P, Bayen A (2014) The path inference filter: model-based low-latency map matching of probe vehicle data. IEEE Trans Intell Transp Syst 15(2):507–529. doi: 10.1109/TITS.2013.2282352 CrossRefGoogle Scholar
  63. 63.
    Iqbal MS, Choudhury CF, Wang P, González MC (2014) Development of origin-destination matrices using mobile phone call data. Transp Res Part C 40:63–74. doi: 10.1016/j.trc.2014.01.002 CrossRefGoogle Scholar
  64. 64.
    Ji Y, Geroliminis N (2012) On the spatial partitioning of urban transportation networks. Transp Res Part B 46(10):1639–1656. doi: 10.1016/j.trb.2012.08.005 CrossRefGoogle Scholar
  65. 65.
    Kalman R (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35–45. doi: 10.1115/1.3662552 CrossRefGoogle Scholar
  66. 66.
    Kalman R, Bucy R (1961) New results in linear filtering and prediction theory. J Basic Eng 83(1):95–108. doi: 10.1115/1.3658902 MathSciNetCrossRefGoogle Scholar
  67. 67.
    Kim K, Chien S, Spasovic L (2011) Evaluation of technologies for freeway travel time estimation: a case study of i-287 in New Jersey. In: Proceedings of the transportation research board 90th annual meetingGoogle Scholar
  68. 68.
    Kirschfink H, Riegelhuth G, Barceló J (2003) Scenario analysis to support strategic traffic management in the region Frankfurt Rhein-Main. In: 10th World conference on intelligent transport systems. MadridGoogle Scholar
  69. 69.
    Kong QJ, Zhao Q, Wei C, Liu Y (2013) Efficient traffic state estimation for large-scale urban road networks. IEEE Trans Intell Transp Syst 14(1):398–407. doi: 10.1109/TITS.2012.2218237 CrossRefGoogle Scholar
  70. 70.
    Lahrmann H, Pedersen SK, Christensen LT (2010) Bluetooth detektorer som ny cost-effektiv sensor i vejtrafikken. Trafikdage på Aalborg UniversitetGoogle Scholar
  71. 71.
    Leclercq L, Chiabaut N, Trinquier B (2014) Macroscopic fundamental diagrams: a cross-comparison of estimation methods. Transp Res Part B 62:1–12. doi: 10.1016/j.trb.2014.01.007 CrossRefGoogle Scholar
  72. 72.
    Lee C, Hellinga B, Saccomanno F (2006) Evaluation of variable speed limits to improve traffic safety. Transp Res Part C 14(3):213–228CrossRefGoogle Scholar
  73. 73.
    Li JQ, Zhou K, Zhang L, Zhang WB (2012) A multimodal trip planning system with real-time traffic and transit information. J Intell Transp Syst 16(2):60–69. doi: 10.1080/15472450.2012.671708 CrossRefGoogle Scholar
  74. 74.
    Lighthill M, Whitham G (1955) On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc R Soc Lond Ser A: Math Phys Sci 229(1178):317–345Google Scholar
  75. 75.
    van Lint H, Djukic T (2012) Applications of Kalman filtering in traffic management and control. In: Mirchandani PB, Smith JC, Greenberg HJ (eds) 2012 Tutorials in operations research: new directions in informatics, optimization, logistics, and production. INFORMS, pp 59–91. doi: 10.1287/educ.1120.0099
  76. 76.
    van Lint J (2010) Empirical evaluation of new robust travel time estimation algorithms. Transp Res Record: J Transp Res Board 2160:50–59. doi: 10.3141/2160-06 CrossRefGoogle Scholar
  77. 77.
    van Lint J, Hoogendoorn SP (2010) A robust and efficient method for fusing heterogeneous data from traffic sensors on freeways. Comput-Aid Civil Infrastruct Eng 25(8):596–612. doi: 10.1111/j.1467-8667.2009.00617.x
  78. 78.
    Lundgren JT, Peterson A (2008) A heuristic for the bilevel origin-destination-matrix estimation problem. Transp Res Part B 42(4):339–354. doi: 10.1016/j.trb.2007.09.005 CrossRefGoogle Scholar
  79. 79.
    Masher D, Ross D, Wong P, Tuan P, Zeidler P, Peracek S (1975) Guidelines for design and operating of ramp control systems. Technical Report NCHRP 3-22, SRI Project 3340, Standford Research Institute, SRI, Menid Park, CAGoogle Scholar
  80. 80.
    Mazare PE, Tossavainen OP, Bayen A, Work D (2012) Tradeoffs between inductive loops and GPS probe vehicles for travel time estimation: a Mobile Century case study. In: Proceedings of the transportation research board 91st annual meeting. Washington D.CGoogle Scholar
  81. 81.
    Mitchell H (2007) Multi-sensor data fusion: an introduction. Springer, New YorkGoogle Scholar
  82. 82.
    Morari M, Lee JH (1999) Model predictive control: past, present and future. Comput Chem Eng 23(4–5):667–682CrossRefGoogle Scholar
  83. 83.
    Nagle A, Gayah V (2014) Accuracy of networkwide traffic states estimated from mobile probe data. Transp Res Rec: J Transp Res Board 2421:1–11. doi: 10.3141/2421-01 CrossRefGoogle Scholar
  84. 84.
    Pan J, Popa IS, Zeitouni K, Borcea C (2013) Proactive vehicular traffic rerouting for lower travel time. IEEE Trans Veh Technol 62(8):3551–3568. doi: 10.1109/TVT.2013.2260422 CrossRefGoogle Scholar
  85. 85.
    Papageorgiou M, Blosseville JM, Hadj-Salem H (1990) Modelling and real-time control of traffic flow on the southern part of boulevard peripherique in paris: Part I: Modelling. Transp Res Part A 24(5):345–359. doi: 10.1016/0191-2607(90)90047-A CrossRefGoogle Scholar
  86. 86.
    Papageorgiou M, Hadj-Salem H, Blosseville JM (1991) ALINEA: a local feedback control law for on-ramp metering. Transp Res Rec: J Transp Res Board 1320:58–64Google Scholar
  87. 87.
    Papageorgiou M, Kotsialos A (2000) Freeway ramp metering: an overview. In: Intelligent transportation systems, 2000. Proceedings. 2000 IEEE, pp 228–239. doi: 10.1109/ITSC.2000.881058
  88. 88.
    Papamichail I, Kotsialos A, Margonis I, Papageorgiou M (2010) Coordinated ramp metering for freeway networks: a model-predictive hierarchical control approach. Transportation Research Part C 18(3):311–331. doi: 10.1016/j.trc.2008.11.002. 11th IFAC symposium: the role of control
  89. 89.
    Papamichail I, Papageorgiou M (2008) Traffic-responsive linked ramp-metering control. IEEE Trans Intell Transp Syst 9(1):111–121. doi: 10.1109/TITS.2007.908724 CrossRefGoogle Scholar
  90. 90.
    Porter JD, Kim D, Magaña M (2011) Wireless data collection system for real-time arterial travel time estimates. Report No. OR-RD-11-10 OTREC 10-16. Oregon State UniversityGoogle Scholar
  91. 91.
    Rahmani M, Koutsopoulos HN (2013) Path inference from sparse floating car data for urban networks. Transp Res Part C 30:41–54. doi: 10.1016/j.trc.2013.02.002 CrossRefGoogle Scholar
  92. 92.
    Ramezani M, Haddad J, Geroliminis N (2015) Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control. Transp Res Part B 74:1–19. doi: 10.1016/j.trb.2014.12.010 CrossRefGoogle Scholar
  93. 93.
    Schelling I, Hegyi A, Hoogendoorn S (2011) SPECIALIST-RM: integrated variable speed limit control and ramp metering based on shock wave theory. In: 2011 14th International IEEE conference on intelligent transportation systems (ITSC), pp 2154–2159. doi: 10.1109/ITSC.2011.6083116
  94. 94.
    Seo T, Kusakabe T, Asakura Y (2015) Estimation of flow and density using probe vehicles with spacing measurement equipment. Transp Res Part C 53:134–150. doi: 10.1016/j.trc.2015.01.033 CrossRefGoogle Scholar
  95. 95.
    Srivastava A, Geroliminis N (2013) Empirical observations of capacity drop in freeway merges with ramp control and integration in a first-order model. Transp Res Part C 30:161–177CrossRefGoogle Scholar
  96. 96.
    Steenbruggen J, Borzacchiello MT, Nijkamp P, Scholten H (2011) Mobile phone data from GSM networks for traffic parameter and urban spatial pattern assessment: a review of applications and opportunities. GeoJournal 78(2):223–243. doi: 10.1007/s10708-011-9413-y CrossRefGoogle Scholar
  97. 97.
    Taylor C, Meldrum D, Jacobson L (1998) Fuzzy ramp metering: design overview and simulation results. Transp Res Rec: J Transp Res Board 1634:10–18CrossRefGoogle Scholar
  98. 98.
    Transportation Studies Center (1997) Final evaluation report for the CAPITAL-ITS operational test and demonstration programGoogle Scholar
  99. 99.
    Treiber M, Helbing D (2002) Reconstructing the spatio-temporal traffic dynamics from stationary detector data. Cooper Transp Dyn 1:3.1–3.24Google Scholar
  100. 100.
    Valerio D, D’Alconzo A, Ricciato F, Wiedermann W (2009) Exploiting cellular networks for road traffic estimation: a survey and a research roadmap. In: IEEE 69th Vehicular technology conference, 2009. VTC Spring, pp 1–5 (2009). doi: 10.1109/VETECS.2009.5073548
  101. 101.
    van den Hoogen E, Smulders S (1994) Control by variable speed signs. Results of the Dutch experiment. In: Seventh international conference on road traffic monitoring and control, vol 391. London, UK, pp 145–149Google Scholar
  102. 102.
    van Toorenburg JAC, de Kok ML (1999) Automatic incident detection in the motorway control system MTM. Technical report, Bureau Transpute, Gouda, HollandGoogle Scholar
  103. 103.
    Wang P, González M, Hunter T, Bayen A, Schechtner K (2012) Understanding road usage patterns in urban areas. Sci RepGoogle Scholar
  104. 104.
    Work DB, Blandin S, Tossavainen OP, Piccoli B, Bayen AM (2010) A traffic model for velocity data assimilation. Appl Math Res eXpress 2010(1):1–35. doi: 10.1093/amrx/abq002 MathSciNetzbMATHGoogle Scholar
  105. 105.
    Work DB, Tossavainen OP, Blandin S, Bayen AM, Iwuchukwu T, Tracton K (2008) An ensemble Kalman filtering approach to highway traffic estimation using GPS enabled mobile devices. In: 47th IEEE conference on decision and control, 2008. CDC 2008, pp 5062–5068. doi: 10.1109/CDC.2008.4739016
  106. 106.
    Zegeye S, De Schutter B, Hellendoorn J, Breunesse E (2011) Reduction of area-wide emissions using an efficient model-based traffic control strategy. In: 2011 IEEE forum on integrated and sustainable transportation systems, FISTS 2011. Austria, Vienna, pp 239–244Google Scholar
  107. 107.
    Zegeye S, De Schutter B, Hellendoorn J, Breunesse E, Hegyi A (2012) A predictive traffic controller for sustainable mobility using parameterized control policies. IEEE Trans Intell Transp Syst 13(3):1420–1429. doi: 10.1109/TITS.2012.2197202 CrossRefGoogle Scholar
  108. 108.
    Zhang HM, Ritchie SG (1997) Freeway ramp metering using artificial neural networks. Transp Res Part C 5(5):273–286. doi: 10.1016/S0968-090X(97)00019-3 CrossRefGoogle Scholar
  109. 109.
    Zhang L, Levinson D (2004) Optimal freeway ramp control without origin-destination information. Transp Res Part B 38:869–887CrossRefGoogle Scholar
  110. 110.
    Zhang L, Levinson D (2004) Some properties of flows at freeway bottlenecks. Transp Res Rec 1883:122–131CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Andreas Allström
    • 1
  • Jaume Barceló
    • 2
  • Joakim Ekström
    • 1
    Email author
  • Ellen Grumert
    • 1
  • David Gundlegård
    • 1
  • Clas Rydergren
    • 1
  1. 1.Communications and Transport Systems, Department of Science and TechnologyLinköping University, Campus NorrköpingNorrköpingSweden
  2. 2.Department of Statistics and Operations ResearchUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations