Skip to main content

Traffic Management for Smart Cities

  • Chapter
  • First Online:

Abstract

Smart cities, participatory sensing as well as location data available in communication systems and social networks generates a vast amount of heterogeneous mobility data that can be used for traffic management . This chapter gives an overview of the different data sources and their characteristics and describes a framework for utilizing the various sources efficiently in the context of traffic management. Furthermore, different types of traffic models and algorithms are related to both the different data sources as well as some key functionalities of active traffic management, for example, short-term prediction and control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Road density is commonly approximated from measured occupancy.

References

  1. Aboudolas K, Geroliminis N (2013) Perimeter and boundary flow control in multi-reservoir heterogeneous networks. Transp Res Part B 55:265–281. doi:10.1016/j.trb.2013.07.003

    Article  Google Scholar 

  2. Alexiadis V, Sallman D, Armstrong A (2012) Traffic analysis toolbox volume XIII: integrated corridor management analysis, modeling, and simulation guide. FHWA-JPO-12-074. Federal Highway Administration

    Google Scholar 

  3. Allström A, Ekströ J, Gundlegård D, Ringdahl R, Rydergren C, Bayen AM, Patire AD (2016) A hybrid approach for short-term traffic state and travel time prediction on highways. Transp Res Rec: J Transp Res Board 2554. doi:10.3141/2554-07

  4. Antoniou C, Barceló J, Breen M, Bullejos M, Casas J, Cipriani E, Ciuffo B, Djukic T, Hoogendoorn S, Marzano V, Montero L, Nigro M, Perarnau J, Punzo V, Toledo T, van Lint H (2016) Towards a generic benchmarking platform for origin-destination flows estimation/updating algorithms: design, demonstration and validation. Transp Res Part C 66:79–98. doi:10.1016/j.trc.2015.08.009

  5. Antoniou C, Ben-Akiva M, Koutsopoulos HN (2010) Kalman filter applications for traffic management. In: Krodić V (ed) Kalman Filter. INTECH

    Google Scholar 

  6. Bachmann C, Abdulhai B, Roorda MJ, Moshiri B (2013) A comparative assessment of multi-sensor data fusion techniques for freeway traffic speed estimation using microsimulation modeling. Transp Res Part C 26:33–48. doi:10.1016/j.trc.2012.07.003

    Article  Google Scholar 

  7. Bar-Gera H (2007) Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study from Israel. Transp Res Part C 15(6):380–391. doi:10.1016/j.trc.2007.06.003

    Article  Google Scholar 

  8. Barceló J (2010) Models, traffic models, simulation, and traffic simulation. In: Barceló J (ed) Fundamentals of traffic simulation. Springer, New York, NY, pp 1–62

    Chapter  Google Scholar 

  9. Barceló J, Gilliéron F, Linares M, Serch O, Montero L (2012) Exploring link covering and node covering formulations of detection layout problem. Transp Res Rec: J Transp Res Board 2308:17–26. doi:10.3141/2308-03

    Article  Google Scholar 

  10. Barceló J, Montero L, Bullejos M, Linares M (2014) A practical proposal for using origin-destination matrices in the analysis, modeling and simulation for traffic management. In: 93rd TRB annual meeting compendium of papers, 14-3793

    Google Scholar 

  11. Barceló J, Montero L, Bullejos M, Linares M, Serch O (2013) Robustness and computational efficiency of Kalman filter estimator of time-dependent origin-destination matrices. Transp Res Rec: J Transp Res Board 2344:31–39. doi:10.3141/2344-04

  12. Barceló J, Montero L, Bullejos M, Serch O, Carmona C (2013) A Kalman filter approach for exploiting bluetooth traffic data when estimating time-dependent OD matrices. J Intell Transp Syst 17(2):123–141. doi:10.1080/15472450.2013.764793

  13. Barceló J, Montero L, Marqués L, Carmona C (2010) A Kalman-filter approach for dynamic OD estimation in corridors based on bluetooth and wi-fi data collection. In: Proceedings of the 12th WCTR. Lisabon, Portugal

    Google Scholar 

  14. Bayen A, Butler J, Patire A (2011) Mobile Millennium final report. Institute of Transportation Studies, University of California, Berkeley, California Center for Innovative Transportation

    Google Scholar 

  15. Blondel VD, de Cordes N, Decuyper A, Deville P, Raguenez J, Smoreda Z (2013) Mobile phone data for development-analysis of mobile phone datasets for the development of Ivory Coast

    Google Scholar 

  16. Boero M (1999) Case studies of systems: the KITS model. Workshop on intelligent traffic models. Delft University, ERUDIT

    Google Scholar 

  17. Boero M, Kirschfink H (1999) Case studies of systems: the ENTERPRICE model. Workshop on intelligent traffic models. Delft University, ERUDIT

    Google Scholar 

  18. Bogenberger K, May AD (1999) Advanced coordinated traffic responsive ramp metering strategies. PATH working paper, vol iii, no 2

    Google Scholar 

  19. Bullejos M, Barceló J, Montero L (2014) A DUE based bilevel optimization approach for the estimation of time sliced OD matrices. In: Proceeding of international symposium of transport simulation 2014

    Google Scholar 

  20. Byon YJ, Shalaby A, Abdulhai B, El-Tantawy S (2010) Traffic data fusion using SCAAT Kalman filters. In: Proceedings of the transportation research board 89th annual meeting

    Google Scholar 

  21. Caceres N, Wideberg JP, Benitez FG (2007) Deriving origin destination data from a mobile phone network. IET Intell Transp Syst 1(1):15–26. doi:10.1049/iet-its:20060020

    Article  Google Scholar 

  22. Calabrese F, Diao M, Di Lorenzo G, Ferreira J Jr, Ratti C (2013) Understanding individual mobility patterns from urban sensing data: a mobile phone trace example. Transp Res Part C 26:301–313. doi:10.1016/j.trc.2012.09.009

  23. Cantelmo G, Cipriani E, Gemma A, Nigro M (2014) An adaptive bi-level gradient procedure for the estimation of dynamic traffic demand. IEEE Trans Intell Transp Syst 15(3):1348–1361. doi:10.1109/TITS.2014.2299734

    Article  Google Scholar 

  24. Carlson R, Papamichail I, Papageorgiou M (2011) Local feedback-based mainstream traffic flow control on motorways using variable speed limits. IEEE Trans Intell Transp Syst 12(4):1261–1276

    Article  Google Scholar 

  25. Carlson RC, Papamichail I, Papageorgiou M (2014) Integrated feedback ramp metering and mainstream traffic flow control on motorways using variable speed limits. Transp Res Part C 46:209–221. doi:10.1016/j.trc.2014.05.017

    Article  Google Scholar 

  26. Chiu YC, Bottom J, Mahut M, Paz A, Balakrishna R, Waller T, Hicks J (2011) Dynamic traffic assignment: a primer. Transp Res E-Circ E-C153

    Google Scholar 

  27. Chung K, Rudjanakanoknad J, Cassidy MJ (2007) Relation between traffic density and capacity drop at three freeway bottlenecks. Transp Res Part B 41:82–95

    Article  Google Scholar 

  28. Cipriani E, Florian M, Mahut M, Nigro M (2011) A gradient approximation approach for adjusting temporal origin-destination matrices. Transp Res Part C 19(2):270–282. doi:10.1016/j.trc.2010.05.013. Emerging theories in traffic and transportation and methods for transportation planning and operations

  29. Cuena J, Hernández J, Molina M (1995) Knowledge-based models for adaptive traffic management systems. Transp Res Part C 3(5):311–337. doi:10.1016/0968-090X(95)00013-9

    Article  Google Scholar 

  30. Daganzo CF (1994) The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp Res Part B 28(4):269–287. doi:10.1016/0191-2615(94)90002-7

    Article  Google Scholar 

  31. Daganzo CF (2007) Urban gridlock: macroscopic modeling and mitigation approaches. Transp Res Part B 41(1):49–62. doi:10.1016/j.trb.2006.03.001

    Article  MathSciNet  Google Scholar 

  32. Ekström J, Engelson L, Rydergren C (2014) Optimal toll locations and toll levels in congestion pricing schemes: a case study of Stockholm. Transp Plann Technol 37(4):333–353. doi:10.1080/03081060.2014.897129

    Article  Google Scholar 

  33. Ekström J, Kristoffersson I, Quttineh NH (2016) Surrogate-based optimization of cordon toll levels in congested traffic networks. J Adv Transp doi:10.1002/atr.1386 (Accepted)

  34. Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367. doi:10.1007/s10236-003-0036-9

    Article  Google Scholar 

  35. Evensen G (2009) Data assimilation: the ensemble Kalman filter. Springer, Science & Business Media

    Google Scholar 

  36. Faouzi NEE, Leung H, Kurian A (2011) Data fusion in intelligent transportation systems: progress and challenges—a survey. Inf Fusion 12(1):4–10. doi:10.1016/j.inffus.2010.06.001. Special Issue on Intelligent Transportation Systems

  37. García CE, Prett DM, Morari M (1989) Model predictive control: theory and practice—a survey. Automatica 25(3):335–348

    Article  MATH  Google Scholar 

  38. Gayah V, Dixit V (2013) Using mobile probe data and the macroscopic fundamental diagram to estimate network densities. Transp Res Rec: J Transp Res Board 2390:76–86. doi:10.3141/2390-09

    Article  Google Scholar 

  39. Geroliminis N, Daganzo CF (2008) Existence of urban-scale macroscopic fundamental diagrams: some experimental findings. Transp Res Part B 42(9):759–770. doi:10.1016/j.trb.2008.02.002

    Article  Google Scholar 

  40. Geroliminis N, Haddad J, Ramezani M (2013) Optimal perimeter control for two urban regions with macroscopic fundamental diagrams: a model predictive approach. IEEE Trans Intell Transp Syst 14(1):348–359. doi:10.1109/TITS.2012.2216877

    Article  Google Scholar 

  41. Geroliminis N, Sun J (2011) Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transp Res Part B 45(3):605–617. doi:10.1016/j.trb.2010.11.004

    Article  Google Scholar 

  42. Goldstein N, Kumar K (1982) A decentralized control strategy for freeway regulation. Transp Res Part B 16(4):279–290. doi:10.1016/0191-2615(82)90012-1

    Article  Google Scholar 

  43. Gomes G, Horowitz R (2006) Optimal freeway ramp metering using the asymmetric cell transmission model. Transp Res Part C 14(4):244–262. doi:10.1016/j.trc.2006.08.001

    Article  Google Scholar 

  44. Grumert E, Ma X, Tapani A (2015) Analysis of a cooperative variable speed limit system using microscopic traffic simulation. Transp Res Part C 52:173–186

    Article  Google Scholar 

  45. Grumert E, Tapani A, Ma X (2016) Evaluation of four control algorithms used in variable speed limit systems. In: TRB 95th annual meeting compendium of papers, 16-2880. Washington, U.S.A

    Google Scholar 

  46. Gundlegård D, Allström A, Bergfeldt E, Bayen AM, Ringdahl R (2015) Travel time and point speed fusion based on a macroscopic traffic model and non-linear filtering. In: 2015 IEEE 18th international conference on intelligent transportation systems, pp 2121–2128. doi:10.1109/ITSC.2015.343

  47. Gundlegárd D, Karlsson JM (2006) Generating road traffic information from cellular networks—new possibilities in UMTS. In: 2006 6th International conference on ITS telecommunications, pp 1128–1133. doi:10.1109/ITST.2006.288805

  48. Gundlegård D, Karlsson JM (2009) Handover location accuracy for travel time estimation in GSM and UMTS. IET Intell Transp Syst 3(1):87–94. doi:10.1049/iet-its:20070067

    Article  Google Scholar 

  49. Haddad J, Geroliminis N (2012) On the stability of traffic perimeter control in two-region urban cities. Transp Res Part B 46(9):1159–1176. doi:10.1016/j.trb.2012.04.004

    Article  Google Scholar 

  50. Hadi MA (2005) Coordinated traffic responsive ramp metering strategies—an assessment based on previous studies. In: 12th World congress on intelligent transport systems

    Google Scholar 

  51. Haghani A, Hamedi M, Sadabadi K, Young S, Tarnoff PJ (2010) Freeway travel time ground truth data collection using Bluetooth sensors. In: Proceedings of the transportation research board 89th annual meeting. Transportation Research Board, Washington DC

    Google Scholar 

  52. Hegyi A, De Schutter B, Heelendoorn J (2003) MPC-based optimal coordination of variable speed limits to suppress shock waves in freeway traffic. In: American control conference, 2003. Proceedings of the 2003, vol 5, pp 4083–4088. doi:10.1109/ACC.2003.1240475

  53. Hegyi A, De Schutter B, Hellendoorn J (2005) Optimal coordination of variable speed limits to suppress shock waves. IEEE Trans Intell Transp Syst 6(1):102–112

    Article  Google Scholar 

  54. Hegyi A, Hoogendoorn S, Schreuder M, Stoelhorst H, Viti F (2008) Specialist: a dynamic speed limit control algorithm based on shock wave theory. In: 11th International IEEE conference on intelligent transportation systems. Beijing, China, pp 827–832

    Google Scholar 

  55. Hegyi A, Schutter BD, Hellendoorn H (2005) Model predictive control for optimal coordination of ramp metering and variable speed limits. Transp Res Part C 13(3):185–209. doi:10.1016/j.trc.2004.08.001

    Article  Google Scholar 

  56. Herrera JC, Work DB, Herring R, Ban XJ, Jacobson Q, Bayen AM (2010) Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment. Transp Res Part C 18(4):568–583. doi:10.1016/j.trc.2009.10.006

    Article  Google Scholar 

  57. Highways Agency (2007) M25, Control motorway, summary report. Technical report. Department for Transportation, London, UK

    Google Scholar 

  58. van Hinsbergen C, van Lint J, Sanders F (2007) Short term traffic prediction models, deliverable DIIF-1a in project II-F: travel time prediction on urban networks. TU Delft and Vialis Traffic

    Google Scholar 

  59. van Hinsbergen CPI, Zuurbier FS, van Lint JWC, van Zuylen HJ (2008) Using an LWR model with a cell based extended Kalman filter to estimate travel times. In: The 3rd International symposium of transport simulation. Surfer’s Paradise, QLD, Australia

    Google Scholar 

  60. Hofleitner A (2012) Leveraging geolocalization technologies to model and estimate urban traffic. Ph.D. thesis. Université Paris-Est

    Google Scholar 

  61. Huang A, Rudolph L (2007) Bluetooth essentials for programmers. Cambridge University Press

    Google Scholar 

  62. Hunter T, Abbeel P, Bayen A (2014) The path inference filter: model-based low-latency map matching of probe vehicle data. IEEE Trans Intell Transp Syst 15(2):507–529. doi:10.1109/TITS.2013.2282352

    Article  Google Scholar 

  63. Iqbal MS, Choudhury CF, Wang P, González MC (2014) Development of origin-destination matrices using mobile phone call data. Transp Res Part C 40:63–74. doi:10.1016/j.trc.2014.01.002

    Article  Google Scholar 

  64. Ji Y, Geroliminis N (2012) On the spatial partitioning of urban transportation networks. Transp Res Part B 46(10):1639–1656. doi:10.1016/j.trb.2012.08.005

    Article  Google Scholar 

  65. Kalman R (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35–45. doi:10.1115/1.3662552

    Article  Google Scholar 

  66. Kalman R, Bucy R (1961) New results in linear filtering and prediction theory. J Basic Eng 83(1):95–108. doi:10.1115/1.3658902

    Article  MathSciNet  Google Scholar 

  67. Kim K, Chien S, Spasovic L (2011) Evaluation of technologies for freeway travel time estimation: a case study of i-287 in New Jersey. In: Proceedings of the transportation research board 90th annual meeting

    Google Scholar 

  68. Kirschfink H, Riegelhuth G, Barceló J (2003) Scenario analysis to support strategic traffic management in the region Frankfurt Rhein-Main. In: 10th World conference on intelligent transport systems. Madrid

    Google Scholar 

  69. Kong QJ, Zhao Q, Wei C, Liu Y (2013) Efficient traffic state estimation for large-scale urban road networks. IEEE Trans Intell Transp Syst 14(1):398–407. doi:10.1109/TITS.2012.2218237

    Article  Google Scholar 

  70. Lahrmann H, Pedersen SK, Christensen LT (2010) Bluetooth detektorer som ny cost-effektiv sensor i vejtrafikken. Trafikdage på Aalborg Universitet

    Google Scholar 

  71. Leclercq L, Chiabaut N, Trinquier B (2014) Macroscopic fundamental diagrams: a cross-comparison of estimation methods. Transp Res Part B 62:1–12. doi:10.1016/j.trb.2014.01.007

    Article  Google Scholar 

  72. Lee C, Hellinga B, Saccomanno F (2006) Evaluation of variable speed limits to improve traffic safety. Transp Res Part C 14(3):213–228

    Article  Google Scholar 

  73. Li JQ, Zhou K, Zhang L, Zhang WB (2012) A multimodal trip planning system with real-time traffic and transit information. J Intell Transp Syst 16(2):60–69. doi:10.1080/15472450.2012.671708

    Article  Google Scholar 

  74. Lighthill M, Whitham G (1955) On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc R Soc Lond Ser A: Math Phys Sci 229(1178):317–345

    Google Scholar 

  75. van Lint H, Djukic T (2012) Applications of Kalman filtering in traffic management and control. In: Mirchandani PB, Smith JC, Greenberg HJ (eds) 2012 Tutorials in operations research: new directions in informatics, optimization, logistics, and production. INFORMS, pp 59–91. doi:10.1287/educ.1120.0099

  76. van Lint J (2010) Empirical evaluation of new robust travel time estimation algorithms. Transp Res Record: J Transp Res Board 2160:50–59. doi:10.3141/2160-06

    Article  Google Scholar 

  77. van Lint J, Hoogendoorn SP (2010) A robust and efficient method for fusing heterogeneous data from traffic sensors on freeways. Comput-Aid Civil Infrastruct Eng 25(8):596–612. doi:10.1111/j.1467-8667.2009.00617.x

  78. Lundgren JT, Peterson A (2008) A heuristic for the bilevel origin-destination-matrix estimation problem. Transp Res Part B 42(4):339–354. doi:10.1016/j.trb.2007.09.005

    Article  Google Scholar 

  79. Masher D, Ross D, Wong P, Tuan P, Zeidler P, Peracek S (1975) Guidelines for design and operating of ramp control systems. Technical Report NCHRP 3-22, SRI Project 3340, Standford Research Institute, SRI, Menid Park, CA

    Google Scholar 

  80. Mazare PE, Tossavainen OP, Bayen A, Work D (2012) Tradeoffs between inductive loops and GPS probe vehicles for travel time estimation: a Mobile Century case study. In: Proceedings of the transportation research board 91st annual meeting. Washington D.C

    Google Scholar 

  81. Mitchell H (2007) Multi-sensor data fusion: an introduction. Springer, New York

    Google Scholar 

  82. Morari M, Lee JH (1999) Model predictive control: past, present and future. Comput Chem Eng 23(4–5):667–682

    Article  Google Scholar 

  83. Nagle A, Gayah V (2014) Accuracy of networkwide traffic states estimated from mobile probe data. Transp Res Rec: J Transp Res Board 2421:1–11. doi:10.3141/2421-01

    Article  Google Scholar 

  84. Pan J, Popa IS, Zeitouni K, Borcea C (2013) Proactive vehicular traffic rerouting for lower travel time. IEEE Trans Veh Technol 62(8):3551–3568. doi:10.1109/TVT.2013.2260422

    Article  Google Scholar 

  85. Papageorgiou M, Blosseville JM, Hadj-Salem H (1990) Modelling and real-time control of traffic flow on the southern part of boulevard peripherique in paris: Part I: Modelling. Transp Res Part A 24(5):345–359. doi:10.1016/0191-2607(90)90047-A

    Article  Google Scholar 

  86. Papageorgiou M, Hadj-Salem H, Blosseville JM (1991) ALINEA: a local feedback control law for on-ramp metering. Transp Res Rec: J Transp Res Board 1320:58–64

    Google Scholar 

  87. Papageorgiou M, Kotsialos A (2000) Freeway ramp metering: an overview. In: Intelligent transportation systems, 2000. Proceedings. 2000 IEEE, pp 228–239. doi:10.1109/ITSC.2000.881058

  88. Papamichail I, Kotsialos A, Margonis I, Papageorgiou M (2010) Coordinated ramp metering for freeway networks: a model-predictive hierarchical control approach. Transportation Research Part C 18(3):311–331. doi:10.1016/j.trc.2008.11.002. 11th IFAC symposium: the role of control

  89. Papamichail I, Papageorgiou M (2008) Traffic-responsive linked ramp-metering control. IEEE Trans Intell Transp Syst 9(1):111–121. doi:10.1109/TITS.2007.908724

    Article  Google Scholar 

  90. Porter JD, Kim D, Magaña M (2011) Wireless data collection system for real-time arterial travel time estimates. Report No. OR-RD-11-10 OTREC 10-16. Oregon State University

    Google Scholar 

  91. Rahmani M, Koutsopoulos HN (2013) Path inference from sparse floating car data for urban networks. Transp Res Part C 30:41–54. doi:10.1016/j.trc.2013.02.002

    Article  Google Scholar 

  92. Ramezani M, Haddad J, Geroliminis N (2015) Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control. Transp Res Part B 74:1–19. doi:10.1016/j.trb.2014.12.010

    Article  Google Scholar 

  93. Schelling I, Hegyi A, Hoogendoorn S (2011) SPECIALIST-RM: integrated variable speed limit control and ramp metering based on shock wave theory. In: 2011 14th International IEEE conference on intelligent transportation systems (ITSC), pp 2154–2159. doi:10.1109/ITSC.2011.6083116

  94. Seo T, Kusakabe T, Asakura Y (2015) Estimation of flow and density using probe vehicles with spacing measurement equipment. Transp Res Part C 53:134–150. doi:10.1016/j.trc.2015.01.033

    Article  Google Scholar 

  95. Srivastava A, Geroliminis N (2013) Empirical observations of capacity drop in freeway merges with ramp control and integration in a first-order model. Transp Res Part C 30:161–177

    Article  Google Scholar 

  96. Steenbruggen J, Borzacchiello MT, Nijkamp P, Scholten H (2011) Mobile phone data from GSM networks for traffic parameter and urban spatial pattern assessment: a review of applications and opportunities. GeoJournal 78(2):223–243. doi:10.1007/s10708-011-9413-y

    Article  Google Scholar 

  97. Taylor C, Meldrum D, Jacobson L (1998) Fuzzy ramp metering: design overview and simulation results. Transp Res Rec: J Transp Res Board 1634:10–18

    Article  Google Scholar 

  98. Transportation Studies Center (1997) Final evaluation report for the CAPITAL-ITS operational test and demonstration program

    Google Scholar 

  99. Treiber M, Helbing D (2002) Reconstructing the spatio-temporal traffic dynamics from stationary detector data. Cooper Transp Dyn 1:3.1–3.24

    Google Scholar 

  100. Valerio D, D’Alconzo A, Ricciato F, Wiedermann W (2009) Exploiting cellular networks for road traffic estimation: a survey and a research roadmap. In: IEEE 69th Vehicular technology conference, 2009. VTC Spring, pp 1–5 (2009). doi:10.1109/VETECS.2009.5073548

  101. van den Hoogen E, Smulders S (1994) Control by variable speed signs. Results of the Dutch experiment. In: Seventh international conference on road traffic monitoring and control, vol 391. London, UK, pp 145–149

    Google Scholar 

  102. van Toorenburg JAC, de Kok ML (1999) Automatic incident detection in the motorway control system MTM. Technical report, Bureau Transpute, Gouda, Holland

    Google Scholar 

  103. Wang P, González M, Hunter T, Bayen A, Schechtner K (2012) Understanding road usage patterns in urban areas. Sci Rep

    Google Scholar 

  104. Work DB, Blandin S, Tossavainen OP, Piccoli B, Bayen AM (2010) A traffic model for velocity data assimilation. Appl Math Res eXpress 2010(1):1–35. doi:10.1093/amrx/abq002

    MathSciNet  MATH  Google Scholar 

  105. Work DB, Tossavainen OP, Blandin S, Bayen AM, Iwuchukwu T, Tracton K (2008) An ensemble Kalman filtering approach to highway traffic estimation using GPS enabled mobile devices. In: 47th IEEE conference on decision and control, 2008. CDC 2008, pp 5062–5068. doi:10.1109/CDC.2008.4739016

  106. Zegeye S, De Schutter B, Hellendoorn J, Breunesse E (2011) Reduction of area-wide emissions using an efficient model-based traffic control strategy. In: 2011 IEEE forum on integrated and sustainable transportation systems, FISTS 2011. Austria, Vienna, pp 239–244

    Google Scholar 

  107. Zegeye S, De Schutter B, Hellendoorn J, Breunesse E, Hegyi A (2012) A predictive traffic controller for sustainable mobility using parameterized control policies. IEEE Trans Intell Transp Syst 13(3):1420–1429. doi:10.1109/TITS.2012.2197202

    Article  Google Scholar 

  108. Zhang HM, Ritchie SG (1997) Freeway ramp metering using artificial neural networks. Transp Res Part C 5(5):273–286. doi:10.1016/S0968-090X(97)00019-3

    Article  Google Scholar 

  109. Zhang L, Levinson D (2004) Optimal freeway ramp control without origin-destination information. Transp Res Part B 38:869–887

    Article  Google Scholar 

  110. Zhang L, Levinson D (2004) Some properties of flows at freeway bottlenecks. Transp Res Rec 1883:122–131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joakim Ekström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Allström, A., Barceló, J., Ekström, J., Grumert, E., Gundlegård, D., Rydergren, C. (2017). Traffic Management for Smart Cities. In: Angelakis, V., Tragos, E., Pöhls, H., Kapovits, A., Bassi, A. (eds) Designing, Developing, and Facilitating Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-319-44924-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44924-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44922-7

  • Online ISBN: 978-3-319-44924-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics