Solving the Robust Container Pre-Marshalling Problem

  • Kevin TierneyEmail author
  • Stefan Voß
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9855)


Container terminals across the world sort the containers in the stacks in their yard in a process called pre-marshalling to ensure their efficient retrieval for onward transport. The container pre-marshalling problem (CPMP) has mainly been considered from a deterministic perspective, with containers being assigned an exact exit time from the yard. However, exact exit times are rarely known, and most containers can at best be assigned a time interval in which they are expected to leave. We propose a method for solving the robust CPMP (RCPMP) to optimality that computes a relaxation of the robust problem and leverages this within a solution procedure for the deterministic CPMP. Our method outperforms the state-of-the-art approach on a dataset of 900 RCPMP instances, finding solutions in many cases in under a second.


Objective Function Constraint Programming Exit Time Container Terminal Constraint Programming Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the Paderborn Center for Parallel Computing (PC\(^2\)) for the use of their high-throughput cluster. We also thank the anonymous referees for their valuable comments.


  1. 1.
    Bortfeldt, A., Forster, F.: A tree search procedure for the container pre-marshalling problem. Eur. J. Oper. Res. 217(3), 531–540 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Caserta, M., Schwarze, S., Voß, S.: Container rehandling at maritime container terminals. In: Böse, J.W. (ed.) Handbook of Terminal Planning. Operations Research/Computer Science Interfaces Series, vol. 49, pp. 247–269. Springer, New York (2011)CrossRefGoogle Scholar
  3. 3.
    Caserta, M., Schwarze, S., Voß, S.: A mathematical formulation and complexity considerations for the blocks relocation problem. Eur. J. Oper. Res. 219(1), 96–104 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Caserta, M., Voß, S.: A corridor method-based algorithm for the pre-marshalling problem. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 788–797. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, M.: Pre-marshalling problem: heuristic solution method and instances generator. Expert Syst. Appl. 39(9), 8337–8349 (2012)CrossRefGoogle Scholar
  6. 6.
    Grunow, M., Günther, H.-O., Lehmann, M.: Strategies for dispatching AGVs at automated seaport container terminals. OR Spectr. 28(4), 587–610 (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gupta, N., Nau, D.S.: On the complexity of blocks-world planning. Artif. Intell. 56(2–3), 223–254 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hottung, A., Tierney, K.: A biased random-key genetic algorithm for the container pre-marshalling problem. Comput. Oper. Res. 75, 83–102 (2016)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Huang, S.-H., Lin, T.-H.: Heuristic algorithms for container pre-marshalling problems. Comput. Indus. Eng. 62(1), 13–20 (2012)CrossRefGoogle Scholar
  10. 10.
    Jovanovic, R., Tuba, M., Voß, S.: A multi-heuristic approach for solving the pre-marshalling problem. Cent. Eur. J. Oper. Res. (2015)Google Scholar
  11. 11.
    Ku, D., Arthanari, T.S.: Container relocation problem with time windows for container departure. Eur. J. Oper. Res. 252(3), 1031–1039 (2016)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lee, Y., Chao, S.L.: A neighborhood search heuristic for pre-marshalling export containers. Eur. J. Oper. Res. 196(2), 468–475 (2009)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Lee, Y., Hsu, N.Y.: An optimization model for the container pre-marshalling problem. Comput. Oper. Res. 34(11), 3295–3313 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lehnfeld, J., Knust, S.: Loading, unloading and premarshalling of stacks in storage areas: survey and classification. Eur. J. Oper. Res. 239(2), 297–312 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Prud’homme, C., Fages, J., Lorca, X.: Choco Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S (2015)Google Scholar
  17. 17.
    Rendl, A., Prandtstetter, M.: Constraint models for the container pre-marshaling problem. In: Katsirelos, G., Quimper, C.-G. (eds.) ModRef 2013: 12th International Workshop on Constraint Modelling and Reformulation, pp. 44–56 (2013)Google Scholar
  18. 18.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River (2010)zbMATHGoogle Scholar
  19. 19.
    Tierney, K., Malitsky, Y.: An algorithm selection benchmark of the container pre-marshalling problem. In: Jourdan, L., Dhaenens, C., Marmion, M.-E. (eds.) LION 9 2015. LNCS, vol. 8994, pp. 17–22. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  20. 20.
    Tierney, K., Pacino, D., Voß, S.: Solving the pre-marshalling problem to optimality with A* and IDA*. Flexible Services and Manufacturing (2016, in Press)Google Scholar
  21. 21.
    Tierney, K., Voß, S., Stahlbock, R.: A mathematical model of inter-terminal transportation. Eur. J. Oper. Res. 235(2), 448–460 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Tus, A., Rendl, A., Raidl, G.R.: Metaheuristics for the two-dimensional container pre-marshalling problem. In: Jourdan, L., Dhaenens, C., Marmion, M.-E. (eds.) LION 9 2015. LNCS, vol. 8994, pp. 186–201. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  23. 23.
    UNCTAD: United Nations Conference on Trade and Development (UNCTAD), Review of maritime transport (2015)Google Scholar
  24. 24.
    Vernimmen, B., Dullaert, W., Engelen, S.: Schedule unreliability in liner shipping: origins and consequences for the hinterland supply chain. Marit. Econ. Logistics 9(3), 193–213 (2007)CrossRefGoogle Scholar
  25. 25.
    Voß, S.: Extended mis-overlay calculation for pre-marshalling containers. In: Hu, H., Shi, X., Stahlbock, R., Voß, S. (eds.) ICCL 2012. LNCS, vol. 7555, pp. 86–91. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Wang, N., Jin, B., Lim, A.: Target-guided algorithms for the container pre-marshalling problem. Omega 53, 67–77 (2015)CrossRefGoogle Scholar
  27. 27.
    Zhang, R., Jiang, Z., Yun, W.: Stack pre-marshalling problem: a heuristic-guided branch-and bound algorithm. Int. J. Ind. Eng. Theor. Appl. Pract. 22(5), 509–523 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Decision Support and Operations Research LabUniversity of PaderbornPaderbornGermany
  2. 2.Institute of Information SystemsUniversity of HamburgHamburgGermany

Personalised recommendations