Agent-Based Support for Container Terminals to Make Appointments with Barges

  • Martijn MesEmail author
  • Albert Douma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9855)


We consider a container terminal that has to make appointments with barges dynamically with only limited knowledge about future arriving barges, and in the view of uncertainty and disturbances. We study this problem using a case study at the Port of Rotterdam, considering a proposed multi-agent system for aligning barge rotations and terminal quay schedules. We take the perspective of a single terminal participating in this system and focus on the decision making capabilities of its intelligent agent. Using simulation, with input settings based on characteristics of the larger terminals within the Port of Rotterdam, we analyze the benefits of our approach. We conclude that a terminal can increase its utilization significantly by using various sources of flexibility in the operational planning.


Terminal planning Quay scheduling Dynamic assignment Multi-agent system Simulation 


  1. 1.
    Bierwirth, C., Meisel, F.: A survey of berth allocation and quay crane scheduling problems in container terminals. Eur. J. Oper. Res. 202(3), 615–627 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Cordeau, J., Laporte, G., Legato, P., Moccia, L.: Models and tabu search heuristics for the berth-allocation problem. Transp. Sci. 39(4), 526–538 (2005)CrossRefGoogle Scholar
  3. 3.
    Davidsson, P., Henesey, L., Ramstedt, L., Törnquist, J., Wernstedt, F.: An analysis of agent-based approaches to transport logistics. Transp. Res. Part C 13(4), 255–271 (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Douma, A.M.: Aligning the operations of barges and terminals through distributed planning. Ph.D. thesis, University of Twente, Enschede, December 2008Google Scholar
  5. 5.
    Douma, A., van Hillegersberg, J., Schuur, P.: Design and evaluation of a simulation game to introduce a multi-agent system for barge handling in a seaport. Decis. Support Syst. 53(3), 465–472 (2012)CrossRefGoogle Scholar
  6. 6.
    Douma, A., Schuur, P., Schutten, J.: Aligning barge and terminal operations using service-time profiles. Flexible Serv. Manuf. J. 23, 385–421 (2011)CrossRefGoogle Scholar
  7. 7.
    Gambardella, L.M., Rizzoli, A.E., Zaffalon, M.: Simulation and planning of an intermodal container terminal. Simulation 71(2), 107–116 (1998)CrossRefGoogle Scholar
  8. 8.
    Henesey, L., Davidsson, P., Persson, J.A.: Evaluation of automated guided vehicle systems for container terminals using multi agent based simulation. In: David, N., Sichman, J.S. (eds.) MAPS 2008. LNCS, vol. 5269, pp. 85–96. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Imai, A., Chen, H., Nishimura, E., Papadimitriou, S.: The simultaneous berth and quay crane allocation problem. Transp. Res. Part E 44(5), 900–920 (2008)CrossRefGoogle Scholar
  10. 10.
    Imai, A., Nishimura, E., Papadimitriou, S.: The dynamic berth allocation problem for a container port. Transp. Res. Part B 35(4), 401–417 (2001)CrossRefGoogle Scholar
  11. 11.
    Konings, R.: Opportunities to improve container barge handling in the port of rotterdam from a transport network perspective. J. Transp. Geogr. 15, 443–454 (2007)CrossRefGoogle Scholar
  12. 12.
    Law, A.: Simulation Modeling and Analysis. McGraw-Hill Series in Industrial Engineering and Management Science. McGraw-Hill, Boston (2007)Google Scholar
  13. 13.
    Li, L., Negenborn, R.R., Schutter, B.D.: Multi-agent cooperative transport planning of intermodal freight transport. In: 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), pp. 2465–2471 (2014)Google Scholar
  14. 14.
    Lokuge, P., Alahakoon, D.: Improving the adaptability in automated vessel scheduling in container ports using intelligent software agents. Eur. J. Oper. Res. 177(3), 1985–2015 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Meersman, H., de Voorde, E.V., Vanelslander, T.: Port congestion and implications to maritime logistics. In: Song, D., Panayides, P. (eds.) Maritime Logistics: Contemporary Issues, Chap. 4, pp. 49–68. Bingley, Emerald (2012)CrossRefGoogle Scholar
  16. 16.
    Mes, M., van der Heijden, M., Schuur, P.: Interaction between intelligent agent strategies for real-time transportation planning. CEJOR 21(2), 337–358 (2013)CrossRefGoogle Scholar
  17. 17.
    Mes, M., Iacob, M.-E., van Hillegersberg, J.: A distributed barge planning game. In: Meijer, S.A., Smeds, R. (eds.) ISAGA 2013. LNCS, vol. 8264, pp. 214–221. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Moonen, H., Van de Rakt, B., Miller, I., Van Nunen, J., Van Hillegersberg, J.: Agent technology supports inter-organizational planning in the port. In: de Koster, R., Delfmann, W. (eds.) Managing Supply Chains-Challenges and Opportunities, pp. 1–21. Copenhagen Business School Press, Copenhagen (2007)Google Scholar
  19. 19.
    de Oliveira, R.M., Mauri, G.R., Lorena, L.A.N.: Clustering search for the berth allocation problem. Expert Syst. Appl. 39(5), 5499–5505 (2012)CrossRefGoogle Scholar
  20. 20.
    Park, Y., Kim, K.: A scheduling method for berth and quay cranes. OR Spectr. 25(1), 1–23 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Raa, B., Dullaert, W., Schaeren, R.V.: An enriched model for the integrated berth allocation and quay crane assignment problem. Expert Syst. Appl. 38(11), 14136–14147 (2011)Google Scholar
  22. 22.
    Schut, M.C., Kentrop, M., Leenaarts, M., Melis, M., Miller, I.: Approach: decentralised rotation planning for container barges. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI 2004, pp. 755–759. IOS Press (2004)Google Scholar
  23. 23.
    Stahlbock, R., Voß, S.: Operations research at container terminals: a literature update. OR Spectr. 30, 1–52 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Steenken, D., Voß, S., Stahlbock, R.: Container terminal operation and operations research-a classification and literature review. OR Spectr. 26(1), 3–49 (2004)CrossRefzbMATHGoogle Scholar
  25. 25.
    Thurston, T., Hu, H.: Distributed agent architecture for port automation. In: Proceedings of the 26th International Computer Software and Applications Conference on Prolonging Software Life: Development and Redevelopment, COMPSAC 2002, pp. 81–90. IEEE Computer Society, Washington, D.C. (2002)Google Scholar
  26. 26.
    Ting, C.J., Wu, K.C., Chou, H.: Particle swarm optimization algorithm for the berth allocation problem. Expert Syst. Appl. 41(4), 1543–1550 (2014)CrossRefGoogle Scholar
  27. 27.
    Vidal, J.M., Huynh, N.: Building agent-based models of seaport container terminals. In: Proceedings of the 6th Workshop on Agents in Traffic and Transportation, Toronto, Canada (2010)Google Scholar
  28. 28.
    Vis, I., Koster, R.: Transshipment of containers at a container terminal: an overview. Eur. J. Oper. Res. 147(1), 1–16 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Industrial Engineering and Business Information SystemsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations