Improving Order Picking Efficiency by Analyzing Combinations of Storage, Batching, Zoning, and Routing Policies

  • Teun van GilsEmail author
  • Kris Braekers
  • Katrien Ramaekers
  • Benoît Depaire
  • An Caris
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9855)


In order to differentiate from competitors in terms of customer service, warehouses accept late orders while providing delivery in a quick and timely way. This trend leads to a reduced time to pick an order. The objective of this research is to simulate and evaluate the interaction between several storage, batching, zone picking and routing policies in order to reduce the order picker travel distance. The value of integrating these four operation policy decisions is proven by a real-life case study. A full factorial ANOVA provides insight into the interactions between storage, batching, zoning, and routing policies. The results of the study clearly indicate that warehouses can achieve significant benefits by considering storage, batching, zone picking, and routing policies simultaneously. Awareness of the influence of an individual policy decision on the overall warehouse performance is required to manage warehouse operations, resulting in enhanced customer service.


Order picking Storage Order batching Zone picking Routing Warehouse policies interactions 



This work is supported by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (research project COMEX, Combinatorial Optimization: Metaheuristics & Exact Methods).


  1. 1.
    Çelik, M., Süral, H.: Order picking under random and turnover-based storage policies in fishbone aisle warehouses. IIE Trans. 46(3), 283–300 (2014)CrossRefGoogle Scholar
  2. 2.
    Chen, C.M., Gong, Y., de Koster, R.B., van Nunen, J.A.: A flexible evaluative framework for order picking systems. Prod. Oper. Manag. 19(1), 70–82 (2010)CrossRefGoogle Scholar
  3. 3.
    Chen, T.L., Cheng, C.Y., Chen, Y.Y., Chan, L.K.: An efficient hybrid algorithm for integrated order batching, sequencing and routing problem. Int. J. Prod. Econ. 159, 158–167 (2015)CrossRefGoogle Scholar
  4. 4.
    Cheng, C.Y., Chen, Y.Y., Chen, T.L., Yoo, J.J.W.: Using a hybrid approach based on the particle swarm optimization and ant colony optimization to solve a joint order batching and picker routing problem. Int. J. Prod. Econ. 170(Part C), 805–814 (2015)CrossRefGoogle Scholar
  5. 5.
    Cohen, B.H., Welkowitz, J., Lea, R.B.: Introductory Statistics for the Behavioral Sciences, 7th edn. Wiley, Hoboken (2011)Google Scholar
  6. 6.
    De Koster, R.B.M., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order picking: a literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Field, A.: Discovering Statistics Using IBM SPSS Statistics. SAGE, London (2013)Google Scholar
  8. 8.
    Geisser, S., Greenhouse, S.W.: An extension of box’s results on the use of the f distribution in multivariate analysis. Ann. Math. Stat. 29(3), 885–891 (1958)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse operation: a comprehensive review. Eur. J. Oper. Res. 177(1), 1–21 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Henn, S.: Algorithms for on-line order batching in an order picking warehouse. Comput. Oper. Res. 39(11), 2549–2563 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Ho, Y.C., Tseng, Y.Y.: A study on order-batching methods of order-picking in a distribution centre with two cross-aisles. Int. J. Prod. Res. 44(17), 3391–3417 (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ho, Y.C., Su, T.S., Shi, Z.B.: Order-batching methods for an order-picking warehouse with two cross aisles. Comput. Ind. Eng. 55(2), 321–347 (2008)CrossRefGoogle Scholar
  14. 14.
    Jane, C.C., Laih, Y.W.: A clustering algorithm for item assignment in a synchronized zone order picking system. Eur. J. Oper. Res. 166(2), 489–496 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Petersen, C.G., Aase, G.: A comparison of picking, storage, and routing policies in manual order picking. Int. J. Prod. Econ. 92(1), 11–19 (2004)CrossRefGoogle Scholar
  16. 16.
    Petersen, C.G., Schmenner, R.W.: An evaluation of routing and volume-based storage policies in an order picking operation. Decis. Sci. 30(2), 481–501 (1999)CrossRefGoogle Scholar
  17. 17.
    Roodbergen, K.J.: Storage assignment for order picking in multiple-block warehouses. In: Manzini, R. (ed.) Warehousing in the Global Supply Chain, pp. 139–155. Springer, London (2012)CrossRefGoogle Scholar
  18. 18.
    Roodbergen, K.J., de Koster, R.B.M.: Routing methods for warehouses with multiple cross aisles. Int. J. Prod. Res. 39(9), 1865–1883 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Theys, C., Bräysy, O., Dullaert, W., Raa, B.: Using a TSP heuristic for routing order pickers in warehouses. Eur. J. Oper. Res. 200(3), 755–763 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Won, J., Olafsson, S.: Joint order batching and order picking in warehouse operations. Int. J. Prod. Res. 43(7), 1427–1442 (2005)CrossRefzbMATHGoogle Scholar
  21. 21.
    Yu, M., de Koster, R.B.M.: The impact of order batching and picking area zoning on order picking system performance. Eur. J. Oper. Res. 198(2), 480–490 (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Teun van Gils
    • 1
    Email author
  • Kris Braekers
    • 1
    • 2
  • Katrien Ramaekers
    • 1
  • Benoît Depaire
    • 1
  • An Caris
    • 1
  1. 1.Hasselt UniversityDiepenbeekBelgium
  2. 2.Research Foundation Flanders (FWO)BrusselsBelgium

Personalised recommendations