The Bi-Objective k-Dissimilar Vehicle Routing Problem

  • Sandra ZajacEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9855)


This paper deals with the k-dissimilar vehicle routing problem in which a set of k dissimilar alternatives for a Capacitated Vehicle Routing Problem (CVRP) has to be determined for a single instance. The tradeoff between minimizing the longest routing alternative and maximizing the minimum dissimilarity between two routing alternatives is investigated. Since short vehicle routings tend to be similar to each other, a conflict of objectives arises. The developed heuristic approach approximates the Pareto set with respect to this tradeoff using a dissimilarity metric based on a grid. The method is tested on benchmark instances of the CVRP and findings are reported.


Bi-objective k-dissimilar vehicle routing problem Pareto set approximation 


  1. 1.
    Akgün, V., Erkut, E., Batta, R.: On finding dissimilar paths. Eur. J. Oper. Res. 121(2), 232–246 (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bock, F.: An algorithm for solving ‘Traveling Salesman’ and related network optimization problems. Technical report, 14th National Meeting of the Operations Research Society of America (ORSA), St Louis (1958)Google Scholar
  3. 3.
    Christofides, N.: Combinatorial optimization. Wiley, Chichester and New York (1979)zbMATHGoogle Scholar
  4. 4.
    Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964)CrossRefGoogle Scholar
  5. 5.
    Croes, G.A.: A method for solving traveling salesman problems. Oper. Res. 6, 791–812 (1958)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Dell’Olmo, P., Gentili, M., Scozzari, A.: On finding dissimilar Pareto-optimal paths. Eur. J. Oper. Res. 162(1), 70–82 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Geiger, M.J.: Fast approximation heuristics for multi-objective vehicle routing problems. In: Chio, C., et al. (eds.) EvoApplications 2010, Part II. LNCS, vol. 6025, pp. 441–450. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Glover, F.: Ejection chains, reference structures and alternating path methods for traveling salesman problems. Discrete Appl. Math. 65(1–3), 223–253 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Johnson, P., Joy, D., Clarke, D.: HIGHWAY 3.01, an enhancement routing model: program, description, methodology and revised user’s manual. Technical report, Oak Ridge National Laboratories, Washington, D.C. (1992)Google Scholar
  10. 10.
    Kuby, M., Zhongyi, X., Xiaodong, X.: A minimax method for finding the k best “differentiated” paths. Geogr. Anal. 29(4), 298–313 (1997)CrossRefGoogle Scholar
  11. 11.
    Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(3), 345–358 (1992)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lombard, K., Church, R.L.: The gateway shortest path problem: generating alternative routes for a corridor location problem. Geogr. Syst. 1, 25–45 (1993)Google Scholar
  13. 13.
    Martí, R., González Velarde, J.L., Duarte, A.: Heuristics for the bi-objective path dissimilarity problem. Comput. Oper. Res. 36(11), 2905–2912 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ngueveu, S.U., Prins, C., Wolfler Calvo, R.: A hybrid tabu search for the m-peripatetic vehicle routing problem. In: Maniezzo, V., Stützle, T., Voß, S. (eds.) Matheuristics. Annals of Information Systems, vol. 10, pp. 253–266. Springer, Boston (2010)CrossRefGoogle Scholar
  15. 15.
    Savelsbergh, M.W.P.: The vehicle routing problem with time windows: minimizing route duration. INFORMS J. Comput. 4, 146–154 (1992)CrossRefzbMATHGoogle Scholar
  16. 16.
    Sörensen, K.: Route stability in vehicle routing decisions: a bi-objective approach using metaheuristics. CEJOR 14(2), 193–207 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Suurballe, J.W.: Disjoint paths in a network. Networks 4(2), 125–145 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Talarico, L., Sörensen, K., Springael, J.: The k-dissimilar vehicle routing problem. Eur. J. Oper. Res. 244(1), 129–140 (2015)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Yen, J.Y.: Finding the k shortest loopless paths in a network. Manage. Sci. 17(11), 712–716 (1971)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  21. 21.
    Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Logistics Management DepartmentHelmut-Schmidt-UniversityHamburgGermany

Personalised recommendations