A Revenue Management Approach for Network Capacity Allocation of an Intermodal Barge Transportation System

  • Yunfei Wang
  • Ioana C. BileganEmail author
  • Teodor Gabriel Crainic
  • Abdelhakim Artiba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9855)


We propose a revenue management (RM) model for the network capacity allocation problem of an intermodal barge transportation system. Accept/reject decisions are made based on a probabilistic mixed integer optimization model maximizing the expected revenue of the carrier over a given time horizon. Probability distribution functions are used to characterize future potential demands. The simulated booking system solves, using a commercial software, the capacity allocation problem for each new transportation request. A conventional model for dynamic capacity allocation considering only the available network capacity and the delivery time constraints is used as alternative when analyzing the results of the proposed model.


Revenue management Network capacity allocation Intermodal barge transportation Probabilistic mixed integer model 



We gratefully acknowledge the financial support provided for this project by the i-Trans Association and its innovation platform i-Fret, by the Nord-Pas de Calais Region, France, by the Natural Sciences and Engineering Research Council of Canada through its Discovery grants program, and by Fonds de recherche du Québec through their infrastructure grants.


  1. 1.
    Armstrong, A., Meissner, J.: Railway revenue management: overview and models. Technical report, The Department of Management Science, Lancaster University (2010)Google Scholar
  2. 2.
    Bilegan, I.C., Brotcorne, L., Feillet, D., Hayel, Y.: Revenue management for rail container transportation. EURO J. Trans. Logistics 4(2), 261–283 (2015)CrossRefGoogle Scholar
  3. 3.
    European Commission - White Paper: Roadmap to a Single European Transport Area - Towards a competitive and resource-efficient transport system (2011)Google Scholar
  4. 4.
    Fazi, S., Fransoo, J.C., van Woensel, T.: A decision support system tool for the transportation by barge of import containers: a case study. Decis. Support Syst. 79, 33–45 (2015)CrossRefGoogle Scholar
  5. 5.
    Feng, B., Li, Y., Shen, Z.-J.M.: Air cargo operations: literature review and comparison with practices. Transp. Res. Part C Emerg. Technol. 56, 263–280 (2015)CrossRefGoogle Scholar
  6. 6.
    Frémont, A., Franc, P.: Hinterland transportation in Europe: combined transport versus road transport. J. Transp. Geogr. 18(4), 548–556 (2010)CrossRefGoogle Scholar
  7. 7.
    Konings, R.: Opportunities to improve container barge handling in the port of Rotterdam from a transport network perspective. J. Transp. Geogr. 15(6), 443–454 (2007)CrossRefGoogle Scholar
  8. 8.
    Konings, R., Kreutzberger, E., Maraš, V.: Major considerations in developing a hub-and-spoke network to improve the cost performance of container barge transport in the hinterland: the case of the port of Rotterdam. J. Transp. Geogr. 29, 63–73 (2013)CrossRefGoogle Scholar
  9. 9.
    Li, L., Lin, X., Negenborn, R.R., De Schutter, B.: Pricing intermodal freight transport services: a cost-plus-pricing strategy. In: Corman, F., et al. (eds.) ICCL 2015. LNCS, vol. 9335, pp. 541–556. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24264-4_37 CrossRefGoogle Scholar
  10. 10.
    Liu, D., Yang, H.: Joint slot allocation and dynamic pricing of container sea-rail multimodal transportation. J. Traffic Transp. Eng. 2(3), 198–208 (2015). (English Edition)Google Scholar
  11. 11.
    Notteboom, T.: Challenges for container river services on the Yangtze River: a case study for Chongqing. Res. Transp. Econ. 35(1), 41–49 (2012)CrossRefGoogle Scholar
  12. 12.
    SteadieSeifi, M., Dellaert, N.P., Nuijten, W., van Woensel, T., Raoufi, R.: Multimodal freight transportation planning: a literature review. Eur. J. Oper. Res. 233(1), 1–15 (2014)CrossRefzbMATHGoogle Scholar
  13. 13.
    Tavasszy, L.A., Behdani, B., Konings, R.: Intermodality and Synchromodality. Technical report (2015).
  14. 14.
    Taylor, G.D., Whyte, T.C., DePuy, G.W., Drosos, D.J.: A simulation-based software system for barge dispatching and boat assignment in inland waterways. Simul. Modell. Pract. Theory 13(7), 550–565 (2005)CrossRefGoogle Scholar
  15. 15.
    van Riessen, B., Negenborn, R.R., Dekker, R.: Synchromodal container transportation: an overview of current topics and research opportunities. In: Corman, F., et al. (eds.) ICCL 2015. LNCS, vol. 9335, pp. 386–397. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24264-4_27 CrossRefGoogle Scholar
  16. 16.
    van Riessen, B., Negenborn, R.R., Dekker, R.: The Cargo Fare Class Mix problem-Revenue Management in Synchromodal Container Transportation. Technical report (2015). doi: 10.13140/RG.2.1.4894.9841
  17. 17.
    Ypsilantis, P., Zuidwijk, R.: Joint design and pricing of intermodal port-hinterland network services: Considering economies of scale and service time constraints (No. ERS-2013-011-LIS) ERIM Report Series Research in Management (2013)Google Scholar
  18. 18.
    Zuidwijk, R.: Are we connected? - Ports in Global Networks. ERIM Inaugural Address Series Research in Management. Erasmus Research Institute of Management (2015). ISBN 978-90-5892-435-3Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yunfei Wang
    • 1
  • Ioana C. Bilegan
    • 1
    Email author
  • Teodor Gabriel Crainic
    • 2
  • Abdelhakim Artiba
    • 1
  1. 1.LAMIH UMR CNRS 8201, Université de Valenciennes et du Hainaut-CambrésisValenciennesFrance
  2. 2.CIRRELT and School of ManagementU. du Québec à MontréalMontréalCanada

Personalised recommendations