Service and Transfer Selection for Freights in a Synchromodal Network

  • Arturo Pérez RiveraEmail author
  • Martijn Mes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9855)


We study the problem of selecting services and transfers in a synchromodal network to transport freights with different characteristics, over a multi-period horizon. The evolution of the network over time is determined by the decisions made, the schedule of the services, and the new freights that arrive each period. Although freights become known gradually over time, the planner has probabilistic knowledge about their arrival. Using this knowledge, the planner balances current and future costs at each period, with the objective of minimizing the expected costs over the entire horizon. To model this stochastic finite horizon optimization problem, we propose a Markov Decision Process (MDP) model. To overcome the computational complexity of solving the MDP, we propose a heuristic approach based on approximate dynamic programming. Using different problem settings, we show that our look-ahead approach has significant benefits compared to a benchmark heuristic.


Synchromodal planning Anticipatory planning Intermodal transport Approximate dynamic programming 


  1. 1.
    Bai, R., Wallace, S.W., Li, J., Chong, A.Y.L.: Stochastic service network design with rerouting. Transp. Res. Part B 60, 50–65 (2014)CrossRefGoogle Scholar
  2. 2.
    Caris, A., Macharis, C., Janssens, G.K.: Decision support in intermodal transport: a new research agenda. Comput. Ind. 64(2), 105–112 (2013). Decision Support for Intermodal TransportCrossRefGoogle Scholar
  3. 3.
    Crainic, T.G., Hewitt, M., Rei, W.: Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design. Comput. Oper. Res. 43, 90–99 (2014)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dall’Orto, L.C., Crainic, T.G., Leal, J.E., Powell, W.B.: The single-node dynamic service scheduling and dispatching problem. Eur. J. Oper. Res. 170(1), 1–23 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Ghane-Ezabadi, M., Vergara, H.A.: Decomposition approach for integrated intermodal logistics network design. Transp. Res. Part E 89, 53–69 (2016)CrossRefGoogle Scholar
  6. 6.
    Li, L., Negenborn, R.R., Schutter, B.D.: Intermodal freight transport planning a receding horizon control approach. Transp. Res. Part C 60, 77–95 (2015)CrossRefGoogle Scholar
  7. 7.
    Lium, A.G., Crainic, T.G., Wallace, S.W.: A study of demand stochasticity in service network design. Transp. Sci. 43(2), 144–157 (2009)CrossRefGoogle Scholar
  8. 8.
    Lo, H.K., An, K., Lin, W.H.: Ferry service network design under demand uncertainty. Transp. Res. Part E 59, 48–70 (2013)CrossRefGoogle Scholar
  9. 9.
    Mes, M.R.K., Iacob, M.E.: Synchromodal transport planning at a logistics service provider. In: Zijm, H., Klumpp, M., Clausen, U., ten Hompel, M. (eds.) Logistics and Supply Chain Innovation: Bridging the Gap Between Theory and Practice, pp. 23–36. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  10. 10.
    Nabais, J., Negenborn, R., Bentez, R.C., Botto, M.A.: Achieving transport modal split targets at intermodal freight hubs using a model predictive approach. Transp. Res. Part C 60, 278–297 (2015)CrossRefGoogle Scholar
  11. 11.
    Rivera, A.P., Mes, M.: Dynamic multi-period freight consolidation. In: Corman, F., Voß, S., Negenborn, R.R. (eds.) ICCL 2015. LNCS, vol. 9335, pp. 370–385. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24264-4_26 CrossRefGoogle Scholar
  12. 12.
    Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality, 2nd edn. Wiley, Hoboken (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Riessen, B., Negenborn, R.R., Dekker, R.: Synchromodal container transportation: an overview of current topics and research opportunities. In: Corman, F., Voß, S., Negenborn, R.R. (eds.) ICCL 2015. LNCS, vol. 9335, pp. 386–397. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  14. 14.
    SteadieSeifi, M., Dellaert, N., Nuijten, W., Woensel, T.V., Raoufi, R.: Multimodal freight transportation planning: a literature review. Eur. J. Oper. Res. 233(1), 1–15 (2014)CrossRefzbMATHGoogle Scholar
  15. 15.
    Wieberneit, N.: Service network design for freight transportation: a review. OR Spectrum 30(1), 77–112 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Zhang, M., Pel, A.: Synchromodal hinterland freight transport: model study for the port of Rotterdam. J. Transp. Geogr. 52, 1–10 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Industrial Engineering and Business Information SystemsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations