Towards Real-Time Automated Stowage Planning - Optimizing Constraint Test Ordering

  • Zhuo Qi LeeEmail author
  • Rui Fan
  • Wen-Jing Hsu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9855)


Container stowage planning is a complex task in which multiple objectives have to be optimized while ensuring that the stowage rules as well as the safety and balance requirements are observed. Most algorithms for solving the problem are comprised of 2 parts: a container-location selection mechanism and a constraint evaluation engine. The former selects one or more container-location pairs for allocation iteratively and the latter evaluates whether the selected container-location pairs violate any of the constraints. We observe that, using the same selection mechanism, the order in which the constraints are evaluated can have significant impact on the overall efficiency. We propose Sequential Sample Model (SSM) as an improvement over the existing Random Sample Model (RSM) for analysis of the problem. We present and evaluate several strategies in optimizing the constraint evaluation engine. We show how to achieve the optimal constraint ordering with respect to SSM. However, such ordering requires perfect information on the constraint tests which is impractical. We present alternative strategies and show empirically that their efficiencies are close to the optimum. Experiments show that, when compared to an arbitrary ordering, an average of 2.42 times speed up in the evaluation engine can be achieved.


Maritime logistics Stowage plans Optimization Heuristic algorithms Markov model 



The authors gratefully acknowledge the grants from the NOL Fellowship programme and the co-funding from the Singapore Maritime Institute (SMI). We also extend our gratitude to the anonymous reviewers for their constructive feedbacks and comments.


  1. 1.
    Singapore port marine notice, April 2013. Accessed 25 Mar 2015
  2. 2.
    Ambrosino, D., Anghinolfi, D., Paolucci, M., Sciomachen, A.: A new three-step heuristic for the master bay plan problem. Marit. Econ. Logistics 11(1), 98–120 (2009)CrossRefGoogle Scholar
  3. 3.
    Ambrosino, D., Anghinolfi, D., Paolucci, M., Sciomachen, A.: An experimental comparison of different heuristics for the master bay plan problem. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 314–325. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Ambrosino, D., Sciomachen, A.: Using a bin packing approach for stowing hazardous containers into containerships. In: Fasano, G., Pintér, J.D. (eds.) Optimized Packings with Applications. Springer Optimization and Its Applications, pp. 1–18. Springer International Publishing, Cham (2015)CrossRefGoogle Scholar
  5. 5.
    Ambrosino, D., Sciomachen, A., Tanfani, E.: A decomposition heuristics for the container ship stowage problem. J. Heuristics 12(3), 211–233 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Avriel, M., Penn, M., Shpirer, N.: Container ship stowage problem: complexityand connection to the coloring of circle graphs. Discrete Appl. Math. 103(13), 271–279 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Berend, D., Brafman, R., Cohen, S., Shimony, S., Zucker, S.: Optimal ordering of independent tests with precedence constraints. Discrete Appl. Math. 162, 115–127 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Boros, E., Elsayed, E., Kantor, P., Roberts, F., Xie, M.: Optimization problems for port-of-entry detection systems. In: Chen, H., Yang, C.C. (eds.) Intelligence and Security Informatics: Techniques and Applications. SCI, pp. 319–335. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Chen, C., Lee, S., Shen, Q.: An analytical model for the container loading problem. Eur. J. Oper. Res. 80(1), 68–76 (1995)CrossRefzbMATHGoogle Scholar
  10. 10.
    Elsayed, E.A., Young, C.M., Xie, M., Zhang, H., Zhu, Y.: Port-of-entry inspection: sensor deployment policy optimization. IEEE Trans. Autom. Sci. Eng. 6(2), 265–276 (2009)CrossRefGoogle Scholar
  11. 11.
    Garey, M.: Optimal task sequencing with precedence constraints. Discrete Math. 4(1), 37–56 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Lee, Z.Q., Fan, R., Hsu, W.-J.: Optimizing constraint test ordering for efficient automated stowage planning. In: Corman, F., Voß, S., Negenborn, R. (eds.) ICCL 2015. LNCS, vol. 9335, pp. 343–357. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24264-4_24 CrossRefGoogle Scholar
  13. 13.
    Liu, F., Low, M.Y.H., Hsu, W.J., Huang, S.Y., Zeng, M., Win, C.A.: Randomized algorithm with Tabu search for multi-objective optimization of large containership stowage plans. In: Böse, J.W., Hu, H., Jahn, C., Shi, X., Stahlbock, R., Voß, S. (eds.) ICCL 2011. LNCS, vol. 6971, pp. 256–272. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Liu, F., Low, M.Y.H., Huang, S.Y., Hsu, W.-J., Zeng, M., Win, C.A.: Stowage planning of large containership with tradeoff between crane workload balance and ship stability (2010)Google Scholar
  15. 15.
    Low, M., Zeng, M., Hsu, W., Huang, S.Y., Liu, F., Win, C.A.: Improving safety and stability of large containerships in automated stowage planning. IEEE Syst. J. 5(1), 50–60 (2011)CrossRefGoogle Scholar
  16. 16.
    Monaco, M.F., Sammarra, M., Sorrentino, G.: The terminal-oriented ship stowage planning problem. Eur. J. Oper. Res. 239(1), 256–265 (2014)CrossRefzbMATHGoogle Scholar
  17. 17.
    Pacino, D., Delgado, A., Jensen, R.M., Bebbington, T.: Fast generation of near-optimal plans for eco-efficient stowage of large container vessels. In: Böse, J.W., Hu, H., Jahn, C., Shi, X., Stahlbock, R., Voß, S. (eds.) ICCL 2011. LNCS, vol. 6971, pp. 286–301. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for regression testing. IEEE Trans. Softw. Eng. 27(10), 929–948 (2001)CrossRefGoogle Scholar
  19. 19.
    Tonguç, U.: Sequential testing of complex systems: a review. Discrete Appl. Math. 142(13), 189–205 (2004)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-511–I-518 (2001)Google Scholar
  21. 21.
    Xiao, X., Low, M.Y.H., Liu, F., Huang, S.Y., Hsu, W.J., Li, Z.: An efficient block-based heuristic method for stowage planning of large containerships with crane split consideration. In: The International Conference on Harbour, Maritime and Multimodel Logistics Modelling and Simulation (2009)Google Scholar
  22. 22.
    Young, C.M., Li, M., Zhu, Y., Xie, M., Elsayed, E.A., Asamov, T.: Multiobjective optimization of a port-of-entry inspection policy. IEEE Trans. Autom. Sci. Eng. 7(2), 392–400 (2010)CrossRefGoogle Scholar
  23. 23.
    Zeng, M., Low, M., Hsu, W., Huang, S.Y., Liu, F., Win, C.A.: Automated stowage planning for large containerships with improved safety and stability. In: Proceedings of the 2010 Winter Simulation Conference (WSC), pp. 1976–1989, December 2010Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations