Skip to main content

Facile Synthesis, Formation Mechanism and Optical Properties of ZnO Nanostructures

  • Conference paper
  • First Online:
Recent Trends in Materials Science and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 189))

  • 1498 Accesses

Abstract

ZnO is a very promising material because of its wide range of applications in electronics, photonics, optics and as energy storage materials. Zinc oxide nanorods were synthesized using a simple hydrothermal method at lower temperature and nano spheres by solvothermal method. The formation process of ZnO nanorods and nanospheres is discussed. The X-ray diffraction pattern indicates that the nanorods and nanospheres have hexagonal wurtzite structure. The high resolution transmission electron microscopy (HRTEM) images reveal that the synthesized ZnO nanorods grow along 〈001〉 direction. The optical properties were studied by UV visible absorption and photoluminescence spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grundmann, M., Wenckstern, H.V., Pickenhain, R., Nobis, Th, Rahm, A., Lorenz, M.: Electrical properties of ZnO thin films and optical properties of ZnO-based nanostructures. Superlattices Microstruct. 38, 317–328 (2005)

    Article  ADS  Google Scholar 

  2. Xu, Q., Zhou, S., Schmidt, H.: Magnetic properties of ZnO nanopowders. J. Alloys Compd. 487, 665–667 (2009)

    Article  Google Scholar 

  3. Hsu, C.L., Chen, K.C.: Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration frequency. J. Phys. Chem. C 116(16), 9351–9355 (2012)

    Article  Google Scholar 

  4. Wang, X., Li, W., Liu, J., Wang, F., Kong, J., Qiu, S., Cuizhu, H., Lua, L.: Synthesis of nestlike ZnO hierarchically porous structures and analysis of their gas sensing properties. ACS Appl. Mater. Interfaces 4, 817–825 (2012)

    Article  Google Scholar 

  5. Barpuzary, D., Banik, A., Panda, A.N., Qureshi, M.: Mimicking heteroleptic dyes for an efficient 1D-ZnO based dye-sensitized solar cell using the homoleptic ruthenium(II) dipyridophenazine complex as a photosensitizer. J. Phys. Chem. C 119(8), 3892–3902 (2015)

    Article  Google Scholar 

  6. Shen, X., Mu, D., Chen, S., Wu, B., Wu, F.: Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. Appl. Mater. Interfaces 5, 3118–3125 (2013)

    Article  Google Scholar 

  7. Liu, B., Zeng, H.C.: Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125(15), 4430–4431 (2003)

    Article  Google Scholar 

  8. Xu, C., Shin, P., Cao, L., Gao, D.: Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. J. Phys. Chem. C 114(1), 125–129 (2010)

    Article  Google Scholar 

  9. Wang, C., Mao, B., Kang, Z., Tian, C.: Solution synthesis of ZnO nanotubes via a template-free hydrothermal route. Solid State Commun. 141(11), 620–623 (2007)

    Article  ADS  Google Scholar 

  10. Wang, X.D., Song, V.Z., Wang, L.: Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and the novel devices. J. Mater. Chem. 17(8), 711–720 (2007)

    Article  Google Scholar 

  11. Su,Y., Li, J., Luo, Z., Lua, B., Li, P.: Microstructure, growth process and enhanced photocatalytic activity of flower-like ZnO particles RSC Adv. (2016)

    Google Scholar 

  12. Zhang, Y., Xu, J., Xiang, Q., Li, H., Pan, Q., Xu, P.: Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 113, 3430–3435 (2009)

    Article  Google Scholar 

  13. Lu, L., Chen, J., Li L., Wang, W.: Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance .Nanoscale Res Lett. 7(1), 293 (2012)

    Google Scholar 

  14. Wang, X., Ding, Y., Yuan, D., Hong, J., Liu, Y., Wong, C.P., Hu, C., Wang. Z.L.: Reshaping the tips of ZnO nanowires by pulsed laser irradiation. Nano Res. 5(6) (2012)

    Google Scholar 

  15. Vassieres, L., Keis, K., Lindquist, S.E.: Purpose built anisotropic metal oxide materials: 3D highly oriented arrays of ZnO. J. Phys. Chem. B 105(17), 3350–3352 (2001)

    Article  Google Scholar 

  16. Hung, C.H., Whang, W.T.: A novel low-temperature growth and characterization of single crystal ZnO nanorods. Mater. Chem. Phys. 82(3), 705–710 (2003)

    Article  Google Scholar 

  17. Yu, H.C., Bo, T.C., Chih, K.C., Ying, Y., Chun, T.Y., Heng, L., Tzy, R.L., Chien, C.L., Hao, C.K., Shing, C.W., Tien, C.L.: Ultrastrong mode confinement in ZnO surface plasmon nanolasers. ACS Nano 9(4), 3978–3983

    Google Scholar 

  18. Alenezi, M.R., Alshammari, A.S., Alzanki, T.H., Jarowski, P., Henley, S.J., Ravi, S., Silva, P.: ZnO nanodisk based UV detectors with printed electrodes. Langmuir 30(13), 3913–3921 (2014)

    Article  Google Scholar 

  19. Li, F., Gong, F., Xiao, Y., Zhang, A., Zhao, J., Fang, S., Jia, D.: ZnO twin-spheres exposed in (001) facets: stepwise self-assembly growth and anisotropic blue emission. Acsnano 7(12), 10482–10491 (2013)

    ADS  Google Scholar 

  20. Alenezi, M.R., Henley, S.J., Emerson, N.G., Ravi, S., Silva, P.: From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties

    Google Scholar 

  21. Baraneedharan, P., Siva, C., Nehru, K., Sivakumar, M.: Investigations on structural, optical and electrochemical properties of blue luminescence SnO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 25, 255–261 (2014)

    Google Scholar 

  22. Naveed ul, H.A.: Linköping studies in science and technology. Dissertation No. 1378 luminescence properties of ZnO nanostructures and their implementation as white light emitting diodes (LEDs) by ISBN: 978-91-7393-139-7

    Google Scholar 

  23. Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X., Cai, W.: Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv. Funct. Mater. 20, 561–572 (2010)

    Article  Google Scholar 

  24. Cao, B., Teng, X., Heo, S.H., Li, Y., Cho, S.O., Li, G., Cai, W.: Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties. J. Phys. Chem. C 111(6), 2470–2476 (2007)

    Article  Google Scholar 

  25. Monticone, S., Tufeu, R., Kanaev, A.V.: Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. J. Phys. Chem. B 102, 2854–2862 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Nirmala Jothi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Johny, L.M., Nirmala Jothi, N.S., Sagayaraj, P. (2017). Facile Synthesis, Formation Mechanism and Optical Properties of ZnO Nanostructures. In: Ebenezar, J. (eds) Recent Trends in Materials Science and Applications. Springer Proceedings in Physics, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-44890-9_29

Download citation

Publish with us

Policies and ethics