Skip to main content

Analysing the Competency of Mathematical Modelling in Physics

  • Conference paper
  • First Online:
Key Competences in Physics Teaching and Learning

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 190))

Abstract

A primary goal of physics is to create mathematical models that allow both predictions and explanations of physical phenomena. We weave maths extensively into our physics instruction beginning in high school, and the level and complexity of the maths we draw on grows as our students progress through a physics curriculum. Despite much research on the learning of both physics and math, the problem of how to successfully teach most of our students to use maths in physics effectively remains unsolved. A fundamental issue is that in physics, we don’t just use maths, we think about the physical world with it. As a result, we make meaning with mathematical symbology in a different way than mathematicians do. In this talk we analyse how developing the competency of mathematical modelling is more than just “learning to do math” but requires learning to blend physical meaning into mathematical representations and use that physical meaning in solving problems. Examples are drawn from across the curriculum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A “warrant” is a specific reason presented to justify a claim (Toulmin 1958).

References

  • AAMC/HHMI. (2009). Scientific Foundations for Future Physicians: Report of the AAMC-HHMI Committee.

    Google Scholar 

  • AAAS. (2011). Vision and change in undergraduate biology education: A call to action. AAAS Press.

    Google Scholar 

  • Baddeley, A. (1998). Human Memory: Theory and practice (revised Ed.). Allyn & Bacon. ISBN: 978-0205123124

    Google Scholar 

  • Bing, T. J., & Redish, E. F. (2009). Analysing problem solving using math in physics: Epistemological framing via warrants. Physical Review Special Topics-Physics Education Research, 5(2), 020108. doi:10.1103/PhysRevSTPER.5.020108

    Article  ADS  Google Scholar 

  • Bing, T. J., & Redish, E. F. (2012). Epistemic complexity and the journeyman-expert transition. Physical Review Special Topics-Physics Education Research, 8, 010105. doi:10.1103/PhysRevSTPER.8.010105

  • Bridgman, P. W. (1922). Dimensional analysis. Yale University Press, p. 2. ISBN: 978-1451002621

    Google Scholar 

  • diSessa, A. A. (1993). Toward an Epistemology of Physics. Cognition and Instruction, 10, 105–225. http://jstor.org.proxy-um.researchport.umd.edu/stable/3233725 

    Article  Google Scholar 

  • Dreyfus, B., Geller, B. D., Gouvea, J., Sawtelle, V., Turpen, C., & Redish, E. F. (2014). Chemical energy in an introductory physics course for the life sciences. American Journal of Physics, 82, 403–411. doi:10.1119/1.4870391.

    Article  ADS  Google Scholar 

  • Elby, A., & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science Education, 85(5), 554–567. doi:10.1002/sce.1023

    Article  ADS  Google Scholar 

  • EUR-LEX. (2006). Recommendation 2006/962/EC of the European Parliament and of the Council of 18 December 2006 on key competences for lifelong learning [Official Journal L 394 of 30.12.2006]. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=URISERV%3Ac11090

  • Evans, V. & Green, M. (2006). Cognitive linguistics: An introduction. Lawrence Erlbaum. ISBN: 0-8058-6014-2

    Google Scholar 

  • Fauconnier, G., & Turner, M. (2003). The way we think: Conceptual blending and the mind’s hidden complexities. Basic Books. ISBN: 9780465087860

    Google Scholar 

  • Geller, B., Dreyfus, B., Gouvea, J., Sawtelle, V., Turpen, C., & Redish, E. F. (2014). Entropy and spontaneity in an introductory physics course for life science students. American Journal of Physics, 82, 394–402. doi:10.1119/1.4870389.

    Article  ADS  Google Scholar 

  • Griffiths, D. J. (1999) Introduction to electrodynamics (3rd Ed.). Prentice Hall. ISBN: 013805326X.

    Google Scholar 

  • Gupta, A., & Elby, A. (2011). Beyond epistemological deficits: Dynamic explanations of engineering students’ difficulties with mathematical sense making. International Journal of Science Education, 33(18), 2463–2488. doi:10.1080/09500693.2010.551551.

    Article  ADS  Google Scholar 

  • Hammer, D. (2000). Student resources for learning introductory physics. American Journal of Physics, 68, S52–S59. doi:10.1119/1.19520

    Article  ADS  Google Scholar 

  • Hammer, D., & Elby, A. (2003). Tapping epistemological resources for learning physics. J. Learning Sci., 12, 53–90. http://jstor.org.proxy-um.researchport.umd.edu/stable/1466634

    Article  Google Scholar 

  • Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. Mestre (Ed.), Transfer of learning: Research and perspectives (p. 1593111649). Information Age Publishing. ISBN: 978-1593111649

    Google Scholar 

  • Lakoff, G., & Johnson. M. (1980/2003). Metaphors we live by. University of ChicagoPress. ISBN: 780226468013.

    Google Scholar 

  • Langacker, R. W. (1987). Foundations of cognitive grammar, Vol 1: Theoretical perspectives. Stanford University Press. ISBN: 9780804738514

    Google Scholar 

  • Moore, K., Gianini, J., & Losert, W. (2014). Toward better physics labs for future biologists. American Journal of Physics, 82, 387–393. doi:10.1119/1.4870388.

    Article  ADS  Google Scholar 

  • National Research Council. (2003). Bio 2010: Transforming undergraduate education for future research biologists. National Academy Press. ISBN: 978-0-309-08535-9

    Google Scholar 

  • Redish, E. F. (2005). Problem solving and the use of math in physics courses, in Proceedings of the Conference, World View on Physics Education in 2005: Focusing on Change, Delhi. 21–26 Aug 2005. arXiv:physics/0608268 [physics.ed-ph].

  • Redish, E. F. (2014). Oersted lecture: How should we think about how our students think? American Journal of Physics, 82, 537–551. doi:10.1119/1.4874260.

    Article  ADS  Google Scholar 

  • Redish, E F., & Cooke, T. (2013). Learning each other’s ropes: Negotiating interdisciplinary authenticity, Cell Biology Education - Life Science Education, 12, 175–186. doi:10.1187/cbe.12-09-0147

  • Redish, E. F., & Kuo, E. (2015). Language of physics, language of math. Science and Education, 25(5–6), 561–590. doi:10.1007/s11191-015-9749-7.

    Article  ADS  Google Scholar 

  • Redish, E. F., Bauer, C., Carleton, K. L., Cooke, T. J., Cooper, M., & Crouch, C. H., et al. (2014). NEXUS/Physics: An interdisciplinary repurposing of physics for biologists. American Journal of Physics, 82(5), 368–377. doi: 10.1119/1.4870386

    Article  ADS  Google Scholar 

  • Sherin, B. (2001). How students understand physics equations. Cognition and Instruction, 19, 479–541.http://jstor.org.proxy-um.researchport.umd.edu/stable/3233857

    Article  Google Scholar 

  • Tannen, D. (1994). Framing in discourse. D. Tannen Oxford University Press, 14–56. ISBN: 978-0195079968

    Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge University Press. ISBN: 0521092302

    Google Scholar 

  • Watkins, J., Coffey, J. E., Redish, E. F., & Cooke T. J. (2012). Disciplinary authenticity: Enriching the reforms of introductory physics courses for life-science students. Physical Review Special Topics-Physics Education Research, 8, 010112. 17 p. doi:10.1103/PhysRevSTPER.8.010112

Download references

Acknowledgments

The author gratefully acknowledges conversations and collaborations with the members of the NEXUS/Physics team and the University of Maryland’s Physics Education Research Group. This material is based upon work supported by the Howard Hughes Medical Institute and the US National Science Foundation under Awards No. DUE-12-39999 and DUE-15-04366. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward F. Redish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Redish, E.F. (2017). Analysing the Competency of Mathematical Modelling in Physics. In: Greczyło, T., Dębowska, E. (eds) Key Competences in Physics Teaching and Learning. Springer Proceedings in Physics, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-44887-9_3

Download citation

Publish with us

Policies and ethics