Advertisement

Delivering Social Multimedia Content with Scalability

  • Irene KilaniotiEmail author
  • George A. PapadopoulosEmail author
Chapter
Part of the Computer Communications and Networks book series (CCN)

Abstract

Content Distribution Network (CDN) services are increasingly being used to enable the delivery of bandwindth-demanding large media data to end-users of multimedia content providers. Especially today that HTTP traffic ascribed to media circulating over Online Social Networks (OSNs) has grown, a social-awareness mechanism over a CDN becomes essential [15]. This mechanism aims to exploit patterns of social interactions of the users to reduce the load on the origin server, the traffic on the Internet, and ultimately improve the user experience. By addressing the issue of which content will be copied in the surrogate servers of a CDN, it ensures a near-optimal content diffusion placement. At the same time, it moderates the impact on bandwidth that the Big Data transmitted via OSNs has, offering scalable solutions to existing CDNs or OSNs providers. In this framework, we further address complementary efficient caching policies in the surrogate servers of the CDN infrastructure. We experimentally prove that the various caching schemes applied contribute toward maximization of CDN performance, while content replication costs are taken into consideration.

Keywords

Content Distribution Systems for Large Data Typical Big Data Applications: Social Web Social Video Sharing Social Cascading Caching YouTube Twitter Internet Measurements Content Distribution Networks 

Notes

Acknowledgments

For the development of algorithms and conducting of the accompanying experiments, the cloud infrastructure of the Department of Computer Science of the University of Cyprus, as well as Amazon Web Services, were used.

References

  1. 1.
    Aggarwal, C., Wolf, J.L., Yu, P.S.: Caching on the World Wide Web. IEEE Trans. Knowl. Data Eng. 11(1), 94–107 (1999). doi: 10.1109/69.755618 CrossRefGoogle Scholar
  2. 2.
    Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.A.: The role of social networks in information diffusion. In: Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France, 16–20 April 2012, pp. 519–528 (2012). doi: 10.1145/2187836.2187907
  3. 3.
    Brodersen, A., Scellato, S., Wattenhofer, M.: YouTube around the world: geographic popularity of videos. In: Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France, 16–20 April 2012, pp. 241–250 (2012). doi: 10.1145/2187836.2187870
  4. 4.
    Cha, M., Kwak, H., Rodriguez, P., Ahn, Y., Moon, S.B.: I tube, you tube, everybody tubes: analyzing the world’s largest user generated content video system. IN: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, IMC 2007, San Diego, California, USA, 24–26 Oct 2007, pp. 1–14 (2007). doi: 10.1145/1298306.1298309
  5. 5.
    Center for Applied Internet Data Analysis. https://www.caida.org. Accessed 30 Jun 2016
  6. 6.
    Chard, K., Caton, S., Rana, O., Bubendorfer, K.: Social Cloud: cloud computing in social networks. In: Proceedings of the 3rd IEEE International Conference on Cloud Computing, CLOUD 2010, Miami, FL, USA, 5–10 July 2010, pp. 99–106 (2010). doi: 10.1109/CLOUD.2010.28
  7. 7.
    Cheng, X., Dale, C., Liu, J.: Statistics and social network of YouTube videos. In: Proceedings of the 16th International Workshop on Quality of Service, IWQoS 2008, University of Twente, Enskede, The Netherlands, 2–4 June 2008, pp. 229–238 (2008). doi: 10.1109/IWQOS.2008.32
  8. 8.
    Easley, D.A., Kleinberg, J.M.: Networks, Crowds, and Markets—Reasoning About a Highly Connected World. Cambridge University Press (2010)Google Scholar
  9. 9.
    Figueiredo, F., Benevenuto, F., Almeida, J.M.: The tube over time: characterizing popularity growth of YouTube videos. iN: Proceedings of the 4th International Conference on Web Search and Web Data Mining, WSDM 2011, Hong Kong, China, 9–12 Feb 2011, pp. 745–754 (2011). doi: 10.1145/1935826.1935925
  10. 10.
    Finamore, A., Mellia, M., Munafò, M.M., Torres, R., Rao, S.G.: YouTube everywhere: impact of device and infrastructure synergies on user experience. In: Proceedings of the 11th ACM SIGCOMM Conference on Internet Measurement, IMC 2011, Berlin, Germany, 2–4 Nov 2011, pp. 345–360 (2011). doi: 10.1145/2068816.2068849
  11. 11.
    Gill, P., Arlitt, M., Li, Z., Mahanti, A.: YouTube traffic characterization: a view from the edge. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, IMC 2007, San Diego, California, USA, 24–26 Oct 2007, pp. 15–28 (2007). doi: 10.1145/1298306.1298310
  12. 12.
    Gill, P., Arlitt, M., Li, Z., Mahanti, A.: Characterizing user sessions on YouTube. In: Proceedings of the SPIE Multimedia Computing and Networking Conference, MCN 2008, San Jose, California, USA, 30–31 Jan 2008, pp. 6818060–6818068 (2008). doi: 10.1117/12.775130
  13. 13.
    Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: WTF: the who to follow service at Twitter. In: Proceedings of the 22nd International World Wide Web Conference, WWW 2013, Rio de Janeiro, Brazil, 13–17 May 2013, pp. 505–514 (2013). doi: 10.1145/2488388.2488433
  14. 14.
    Huang, C., Wang, A., Li, J., Ross, K.W.: Measuring and evaluating large-scale CDNs. In: Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement, IMC 2008, Vouliagmeni, Greece, 20–22 Oct 2008, pp. 15–29 (2008)Google Scholar
  15. 15.
    Kilanioti, I.: Improving multimedia content delivery via augmentation with social information. The Social Prefetcher approach. IEEE Trans. Multimedia 17(9), 1460–1470 (2015). doi: 10.1109/TMM.2015.2459658 CrossRefGoogle Scholar
  16. 16.
    Kilanioti, I., Papadopoulos, G.A.: Socially-aware multimedia content delivery for the cloud. In: Proceedings of the 8th IEEE/ACM International Conference on Utility and Cloud Computing, UCC 2015, Limassol, Cyprus, 7–10 Dec 2015, pp. 300–309 (2015). doi: 10.1109/UCC.2015.48
  17. 17.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM (JACM) 46(5), 604–632 (1999). doi: 10.1145/324133.324140 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mitra, S., Agrawal, M., Yadav, A., Carlsson, N., Eager, D.L., Mahanti, A.: Characterizing web-based video sharing workloads. TWEB 5(2), 8 (2011). doi: 10.1145/1961659.1961662 CrossRefGoogle Scholar
  19. 19.
    Rodrigues, T., Benevenuto, F., Cha, M., Gummadi, P.K., Almeida, V.A.F.: On word-of-mouth based discovery of the web. In: Proceedings of the 11th ACM SIGCOMM Conference on Internet Measurement, IMC 2011, Berlin, Germany, 2–4 Nov 2011, pp. 381–396 (2011). doi: 10.1145/2068816.2068852
  20. 20.
    Sastry, N., Yoneki, E., Crowcroft, J.: Buzztraq: predicting geographical access patterns of social cascades using social networks. In: Proceedings of the 2nd ACM EuroSys Workshop on Social Network Systems, SNS 2009, Nuremberg, Germany, 31 March 2009, pp. 39–45 (2009). doi: 10.1145/1578002.1578009
  21. 21.
    Scellato, S., Mascolo, C., Musolesi, M., Crowcroft, J.: Track globally, deliver locally: improving content delivery networks by tracking geographic social cascades. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, Hyderabad, India, March 28–April 1, 2011, pp. 457–466 (2011). doi: 10.1145/1963405.1963471
  22. 22.
    Torres, R., Finamore, A., Kim, J.R., Mellia, M., Munafò, M.M., Rao, S.G.: Dissecting video server selection strategies in the YouTube CDN. In: Proceedings of the 31st International Conference on Distributed Computing Systems, ICDCS 2011, Minneapolis, Minnesota, USA, 20–24 June 2011, pp. 248–257 (2011). doi: 10.1109/ICDCS.2011.43
  23. 23.
    Traverso, S., Huguenin, K., Trestian, I., Erramilli, V., Laoutaris, N., Papagiannaki, K.: Tailgate: handling long-tail content with a little help from friends. In: Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France, 16–20 April 2012, pp. 151–160 (2012). doi: 10.1145/2187836.2187858

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CyprusNicosiaCyprus

Personalised recommendations