Skip to main content

Initial Bone Bed Activation: Bone Matrix Osseotensors—Tissue Engineering

  • Chapter
  • First Online:
Basal Implantology

Abstract

Osseointegration of dental implants requires sufficient intrabony blood supply. In extremely resorbed areas, however, the main source of blood is the periosteal arteries. Basal implant placement in severely atrophic jaws is thus especially challenging because of the poor quality as well as the reduced volume of the future recipient bone site. This situation is aggravated in smokers. Calvaria or iliac bone grafts, mental nerve displacement, and sinus lift procedures are often performed prior to implant placement to overcome the initially unfavorable biological, anatomical, and mechanical status. Patients are often reluctant to undergo such procedures, though, as they are time-consuming and expensive and involve unpredictable degrees of morbidity at the donor and/or recipient sites. Although free bone grafts (autologous bone or bone substitutes) can augment bone volume, they do not promote better blood supply per se; only vascularized pedicular bone grafts are capable of this. Furthermore, in some instances, postsurgical scar tissue actually reduces the blood supply. Stem cell activation using osseotensors and use of PRF membranes are two of the approaches developed to overcome these difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

Recommended Reading

  1. Choukroun J, Adda F, Schoeffler C, Vervelle A. Une opportunité en paro-implantologie: le PRF. Implantodontie. 2001;1(42):55–62.

    Google Scholar 

  2. Mosesson MW, Siebenlist KR, Meh DA. The structure and biological features of fibrinogen and fibrin. Ann N Y Acad Sci. 2001;936:11–30.

    Article  PubMed  Google Scholar 

  3. Weibrich G, Kleis WK, Kunz-Kostomanolakis M, Loos AH, Wagner W. Correlation of platelet concentration in platelet-rich plasma to the extraction method, age, sex, and platelet count of the donor. Int J Oral Maxillofac Implants. 2001;16:693–9.

    PubMed  Google Scholar 

  4. Weibrich G, Kleis WK, Hafner G, Hitzler WE, Wagner W. Comparison of platelet, leukocyte, and growth factor levels in point-of-care platelet-enriched plasma, prepared using a modified Curasan kit, with preparations received from a local blood bank. Clin Oral Implants Res. 2003;14:357–62.

    Article  PubMed  Google Scholar 

  5. Fujioka-Kobayashi M, Miron RJ, Hernandez M, Kandalam U, Zhang Y, Choukroun J. Optimized platelet rich fibrin with the low speed concept: growth factor release, biocompatibility and cellular response. J Periodontol. 2016;2:1–17.

    Google Scholar 

  6. Shamloo A, Xu H, Heilshorn S. Mechanisms of vascular endothelial growth factor-induced pathfinding by endothelial sprouts in biomaterials. Tissue Eng Part A. 2012;18(3–4):320–30.

    Article  PubMed  Google Scholar 

  7. Maciel J, Oliveira MI, Colton E, McNally AK, Oliveira C, Anderson JM, Barbosa MA. Adsorbed fibrinogen enhances production of bone- and angiogenic-related factors by monocytes/macrophages. Tissue Eng Part A. 2014;20(1–2):250–63.

    Article  PubMed  Google Scholar 

  8. Kawazoe T, Kim HH. Tissue augmentation by white blood cell-containing platelet-rich plasma. Cell Transplant. 2012;21(2–3):601–7.

    Article  PubMed  Google Scholar 

  9. Soltan M, Rohrer MD, Prasad HS. Monocytes: super cells for bone regeneration. Implant Dent. 2012;21(1):13–20.

    Article  PubMed  Google Scholar 

  10. Pirraco RP, Reis RL, Marques AP. Effect of monocytes/macrophages on the early osteogenic differentiation of hBMSCs. J Tissue Eng Regen Med. 2013;7(5):392–400.

    Article  PubMed  Google Scholar 

  11. Ghanaati S, Booms P, Orlowska A, Kubesch A, Lorenz J, Rutkowski J, Landes C, Sader R, Kirkpatrick C, Choukroun J. Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol. 2014;40(6):679–89.

    Article  PubMed  Google Scholar 

  12. Miron RJ, Fujioka-Kobayashi M, Bishara M, Zhang Y, Hernandez M, Choukroun J. Platelet-rich fibrin and soft tissue wound healing: a systematic review. Tissue Eng Part B Rev. 2016;23(1):83–99.

    Article  PubMed  Google Scholar 

  13. Alikhani M. Accelerated orthodontics. Integrating a new concept in your daily practice. Presented at: XXXI World ICOI Congress; the Future of Implant Dentistry; October 3–5, 2014, Tokyo, Japan; 2014.

    Google Scholar 

  14. Barone A, Nannmark U. Bone biomaterials & beyond. Milano: Edra Milano; 2014.

    Google Scholar 

  15. Binderman I, Zor U, Kaye AM, et al. The transduction of mechanical force into biochemical events in bone cells may involve activation of phospholipidase A2. Calcif Tissue Int. 1988;42:261–6.

    Article  PubMed  Google Scholar 

  16. Bonewald F. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.

    Article  PubMed  Google Scholar 

  17. Bouletreau PJ, Warren SM, Spector JA, Peled ZM, Gerrets RP, Greenwald JA, Longaker MT. Hypoxia and VEGF up-regulate BMP2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Surg. 2002;109:2384–97.

    Article  PubMed  Google Scholar 

  18. Chappard D. Les cellules osseuses, le modelage et le remodelage osseux. In: Guillaume B, Audran M, Chappard D, editors. Tissue osseux et biomatériaux en chirurgie dentaire, vol. 2. Paris: Quintesssence International; 2014. p. 21–41.

    Google Scholar 

  19. Chenyu H, Ogawa R. Mechanotransduction in bone repair and regeneration. FASEB J. 2010;24(10):3625–32.

    Article  Google Scholar 

  20. Dolan EB, Vaughan TJ, Nieburg GL, Casey C, Tallon D, McNamara LM. How bone tissue and cells experience elevated temperatures during orthopaedic cutting: an experimental and computational investigation. J Biomech Eng. 2014;136:021019.

    Article  PubMed  Google Scholar 

  21. Dolan EB, Haugh MG, Voisin MC, Tallon D, McNamara LM. Thermally induced osteocyte damage initiates a remodelling signalling cascade. PLoS One. 2015;10:e0119652.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Sundeep K, Khosla S. Circulating osteoblast-lineage cells in humans. N Engl J Med. 2005;352:1959–66.

    Article  PubMed  Google Scholar 

  23. Ekström K, Omar O, Granéli C, Wang X, Vazirisani F, Thomsen P. Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells. PLoS One. 2013;8(9):e75227. https://doi.org/10.1371/journal.pone.0075227.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Frost MH. The biology of fracture healing. An overview for clinicians. Part II. Clin Orthop Relat Res. 1989;248:294–309.

    Google Scholar 

  25. Huang C, Ogaxa R. Mechanotransduction in bone repair and regeneration. FASEB J. 2010;24:3625–32.

    Article  PubMed  Google Scholar 

  26. Ilizarov GA. The principles of the Ilizarov method. Bull Hosp Joint Dis Orthop Inst. 1988;48:1–11.

    Google Scholar 

  27. Ilizarov GA. The tension stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 1989a;238:249–81.

    Article  Google Scholar 

  28. Ilizarov GA. The tension stress effect on the genesis and growth of tissues. Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 1989b;239:263–85.

    Google Scholar 

  29. Ilizarov GA. Clinical application of the tension stress effect for limb lengthening. Clin Orthop Relat Res. 1990;250:8–26.

    Google Scholar 

  30. Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol. 1997;59:575–99.

    Article  PubMed  Google Scholar 

  31. Ingber DE. Mechanobiology and diseases of mechanotransduction. Ann Med. 2003;35:564–77.

    Article  PubMed  Google Scholar 

  32. Kazanjian VH. The interrelation of dentistry and surgery in the treatment of deformities of the face and jaws. Am J Orthod Oral Surg. 1941;27:10–30.

    Article  Google Scholar 

  33. Kuroda R, Matsumoto T, Kawakami Y, Fukui T, Mifune Y, M Kurosaka M. Clinical impact of circulating CD34-positive cells on bone regeneration and healing. Tissue Eng Part B Rev. 2014;20(3):190–9. https://doi.org/10.1089/ten.TEB.2013.0511.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Marx JL. Angiogenesis research comes of age. Science. 1987;237:23–4.

    Article  PubMed  Google Scholar 

  35. Matsumoto T, Kawamoto A, Kuroda R, Ishikawa M, Mifune Y, Iwasaki H, Miwa M, Horii M, Hayashi S, Oyamada A, Nishimura H, Murasawa S, Doita M, Kurosaka M, Asahara T. Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am J Pathol. 2006;169(4):1440–57.

    Article  PubMed  PubMed Central  Google Scholar 

  36. McNulty MA, Virdi AS, Christopherson KW, Sena K, Frank RR, Sumner DR. Adult stem cell mobilization enhances intramembranous bone regeneration: a pilot study. Clin Orthop Relat Res. 2012;470(9):2503–12.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Misch CE. Contemporary implant dentistry. St Louis, MO: Mosby Elsevier; 2008. p. 1034–5.

    Google Scholar 

  38. Misch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible. Implications of dental implant planning and surgical placement. J Oral Maxillofac Surg. 1999;57:700–6.

    Article  PubMed  Google Scholar 

  39. Morgan EF, Gleason RE, Hayward LNM, Leong PL, Palomares KTS. Mechanotransduction and fracture repair. J Bone Joint Surg Am. 2008;90(Suppl 1):25–30.

    Article  PubMed  Google Scholar 

  40. Mukherjee S, Raje N, Schoonmaker JA, Liu JC, Hideshima T, Wein MN, Jones DC, et al. Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest. 2008;118(2):491–504.

    PubMed  PubMed Central  Google Scholar 

  41. Odin G, Misch CE, Binderman I, et al. Fixed rehabilitation of severely atrophic jaws using immediately loaded basal disk implants after in situ bone activation. J Oral Implantol. 2012;38:611–6.

    Article  PubMed  Google Scholar 

  42. Odin G, Petitbois R, Cotten P, Philip P. Distraction osteogenesis using bone matrix osteotensors in ectodermal dysplasia: a case report. Implant Dent. 2015;24(5):612–9.

    Article  PubMed  Google Scholar 

  43. Scortecci G. Activation of osteogenesis via bone matrix osteotensors prior to implant placement and/or bone grafting procedures. Nine years of clinical follow-up and research. Presented at XXXI ICOI World Congress; The Future of Implant Dentistry; October 3–5, 2014, Tokyo, Japan; 2014.

    Google Scholar 

  44. Scortecci G, Misch CE, Benner KU. Implants and restorative dentistry. London: Martin Dunitz; 2000. p. 79–85.

    Google Scholar 

  45. Sundelacruz S, Levin M, Kaplan DL. Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS One. 2008;3(11):e3737. https://doi.org/10.1371/journal.pone.0003737.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sundelacruz S, Levin M, Kaplan DL. Comparison of the depolarization response of human mesenchymal stem cells from different donors. Sci Rep. 2015;5:18279. https://doi.org/10.1038/srep18279.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Suya H. Corticotomy in orthodontics. In: Hosl E, Baldauf A, editors. Mechanical and biological basics in orthodontic therapy. Heidelberg: Hütlig Buch; 1991. p. 207–26.

    Google Scholar 

  48. Urist MR. Bone formation by auto-induction. Science. 1965;150:893–9.

    Article  PubMed  Google Scholar 

  49. Vermeulen J. Euro Implanto lecture. France: Nice; 2012.

    Google Scholar 

  50. Zaidi N, Nixon AJ. Stem cell therapy in bone repair and regeneration. Ann N Y Acad Sci. 2007;1117:62–72.

    Article  PubMed  Google Scholar 

  51. Zhang W, Zhu C, Wu Y, Ye D, Wang S, Zou D, Zhang X, Kaplan DL, Jiang X. VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur Cell Mater. 2014;27:1–11.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

Gérard M. Scortecci is the inventor of the Diskimplant and holder of several associated patents that are exploited by the Victory company. He is an unpaid consultant to this firm and a minority shareholder in the company. No money was received from any of the companies mentioned in the book or from any of the companies whose products are mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard M. Scortecci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Binderman, I., Scortecci, G.M., Philip, P., Choukroun, J., Aalam, AA. (2019). Initial Bone Bed Activation: Bone Matrix Osseotensors—Tissue Engineering. In: Scortecci, G. (eds) Basal Implantology. Springer, Cham. https://doi.org/10.1007/978-3-319-44873-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44873-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44871-8

  • Online ISBN: 978-3-319-44873-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics