Skip to main content

Biological Aspects

  • Chapter
  • First Online:
Basal Implantology

Abstract

Decades of continuous clinical use have proven titanium to be a biocompatible material for implants destined to remain in the human body. Surface state, asepsis, gentle handling of the hard and soft tissues, primary stability, and numerous biological and mechanical parameters all contribute to the long-term success of basal implantology. The titanium basal implants used in the studies described hereafter all featured a non-modified, ad modum Brånemark surface which is associated with a low incidence of peri-implantitis. In contrast, this complication has been widely described around implants with the more recent and, for a time, very popular modified (rough) surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

Recommended Reading

  1. Jordana F, Susbielles L, Colat-Parros J. Periimplantitis and implant body roughness: a systematic review of literature. Implant Dent. 2018;27(6):672–81.

    Article  Google Scholar 

  2. Wang JY, Wicklund BH, Gustilo RB, Tsukayama DT. Prosthetic metals interfere with the functions of human osteoblast cells in vitro. Clin Orthop Relat Res. 1997;339:216–26.

    Article  Google Scholar 

  3. Yao J, Szabo GCS, Jacobs JJ, Kuettner KE, Glant TT. Suppression of osteoblast function by titanium particles. J Bone Joint Surg. 1997;1:229–31.

    Google Scholar 

  4. Resnik RR, Misch CE. Avoiding complications in oral implantology. St. Louis, MO: Elsevier; 2017. p. 784–91.

    Google Scholar 

  5. Doglioli P, Scortecci G. Characterization of endosteal osteoblasts isolated from human maxilla and mandible: an experimental system for biocompatibility tests. Cytotechnology. 1991;7:39–48.

    Article  Google Scholar 

  6. Scortecci GM. The Diskimplant: a self-positioning pure titanium implant. Proceedings of the 7th World Congress of Oral Implantology, Munich, FRG (June); 1984.

    Google Scholar 

  7. Scortecci G. L’implant Dentaire Tricortical. PhD thesis, University of Aix-Marseilles, France; 1988.

    Google Scholar 

  8. Scortecci GM. Etude comparative de l’échauffement lors du fraisage de l’os. Ind Dent. 1988;21:34–7.

    Google Scholar 

  9. Ihde S. Principles of BOI. Clinical, scientific, and practical guidelines to 4-D dental implantology. Heidelberg: Springer; 2005.

    Google Scholar 

  10. Albrektsson T. Bone tissue response. Tissue integrated prostheses. London: Mosby; 1985. p. 1361.

    Google Scholar 

  11. Eriksson RA, Albrektsson T. The effect of heat on bone regeneration. An experimental study. J Oral Maxillofac Surg. 1984;42:701–11.

    Article  Google Scholar 

  12. Eriksson RA, Albrektsson T. Thermal injury to bone. A vital microscopic description of heat effects. Int J Oral Surg. 1982;11:115.

    Article  Google Scholar 

  13. Peyton FA. Effectiveness of water coolants with rotary cutting instruments. J Am Dent Assoc. 1958;56(5):664–75.

    Article  Google Scholar 

  14. Scortecci G, Zattara H, Meyere P, Doms P. Diskimplant System: intraoral applications in small bone values. Patient selection and long-term results. In: Laney W, Tolman D, editors. Tissue integration in oral, orthopedic and maxillofacial reconstruction. Chicago: Quintessence; 1990. p. 350–5.

    Google Scholar 

  15. Scortecci GM, Misch CE, Benner KU, editors. Implants and restorative dentistry. London: Martin Dunitz; 2001.

    Google Scholar 

  16. Lyer S, Weiss C, Mehta A. Effects of drill speed on heat production and quality of bone formation in dental implant osteotomies. Part I: Relationship between drill speed and heat production. Int J Prosthodont. 1997;10(5):411–5.

    Google Scholar 

  17. Lyer S, Weiss C, Mehta A. Effects of drill speed on heat production and the rate and quality of bone formation in dental implant osteotomies. Part II: relationship between drill speed and healing. Int J Prosthodont. 1997;10(6):536–40.

    Google Scholar 

  18. Scortecci GM, Doms P. Le Diskimplant. Actual Odontostom. 1987;159:521–38.

    Google Scholar 

  19. Albrektsson T. Brånemark System Info. 1999;5(1).

    Google Scholar 

  20. Albrektsson T. A nuanced perspective on peri-implantitis. Implant. 2016;17, 2/2016.

    Google Scholar 

  21. Baldi D, Menini M, Pera F, Ravera G, Pera P. Plaque accumulation on exposed titanium surfaces and peri-implant tissue behavior. A preliminary 1-year clinical study. Int J Prosthodont. 2009;22(5):447–55.

    PubMed  Google Scholar 

  22. de Waal YC, Eijsbouts HV, Winkel EG, van Winkelhoff AJ. Microbial characteristics of peri-implantitis: a case-control study. J Periodontol. 2016;26:1–13.

    Google Scholar 

  23. Esposito M, Ardebili Y, Worthington HV. Interventions for replacing missing teeth: different types of dental implants. Cochrane Database Syst Rev. 2014;22(7):CD003815.

    Google Scholar 

  24. Itic J, Bessade J. Réflexions sur les péri-implantites. Alpha Omega News. 2016:28–29.

    Google Scholar 

  25. Ivanoff CJ, Sennerby L, Lekholm U. Influence of mono- and bicortical anchorage on the integration of titanium implants. A study in the rabbit tibia. Int J Oral Maxillofac Surg. 1996;25:229–35.

    Article  Google Scholar 

  26. Jaffin RA, Berman CL. The excessive loss of Brånemark fixtures in Type IV bone; a 5-year analysis. J Periodontol. 1991;62:2–4.

    Article  Google Scholar 

  27. Juillet JM. Three-dimensional implants – development and evaluation. Oral Implantol. 1974;4:101–4.

    Google Scholar 

  28. Kasemo B. Biocompatibility of titanium implants: surface science aspects. J Prosthet Dent. 1983;49:832.

    Article  Google Scholar 

  29. Lekholm U. Cortical stabilization. In: Lindhe J, editor. Clinical periodontology and implant dentistry. Copenhagen: Munksgaard; 1998. p. 892–902.

    Google Scholar 

  30. Michel MC, Veyret D, Pantaloni J, Martin R. Analyse comparative par éléments finis d’implants odontologiques avec et sans appui cortical. Le Chirurgien-Dentiste de France. 1990;510:83–9.

    Google Scholar 

  31. National Institute of Health Consensus Development Conference statement on dental implants. Bethesda, MD: NIH; 1988.

    Google Scholar 

  32. Peixoto CD, Almas K. The implant surface characteristics and peri-implantitis. An evidence-based update. Odontostomatol Trop. 2016;39(153):23–35.

    PubMed  Google Scholar 

  33. Rodriguez Y, Baena R, Arciola CR, Selan L, Battaglia R, Imbriani M, Rizzo S, Bisai L. Evaluation of bacterial adhesion on machined titanium, Osseotite and Nanotite discs. Int J Artif Organs. 2012;35(10):754–61. https://doi.org/10.5301/ijao.5000143.

    Article  Google Scholar 

  34. Schroeder A, van de Zypen E, Stich H, Sutter F. The reactions of bone, connective tissues and epithelium to endosteal implants with titanium plasma-sprayed surfaces. J Maxillofac Surg. 1981;9:15–25.

    Article  Google Scholar 

  35. Scortecci GM. Immediate function of cortically anchored disk-design implants without bone augmentation in moderately to severely resorbed completely edentulous maxillae. J Oral Implantol. 1999;25(2):70–9.

    Article  Google Scholar 

  36. Scortecci G, Modschiedler T. Ostéointegration et mise en function immediate. 15 ans de recherche et d’application clinique dans le traitement du maxillaire. Implantologie. 1997;24:28–32.

    Google Scholar 

  37. Scortecci G, Misch CE, Benner KU. Implants and restorative dentistry. London: Martin Dunitz; 2001.

    Google Scholar 

  38. Turkyilmaz I, Tözüm TF. 30-year outcomes of dental implants supporting mandibular fixed dental prostheses: A retrospective review of 4 cases. Implant Dent. 2015;24(5):620–4.

    Article  Google Scholar 

  39. Zetterqvist L, Feldman S, Rotter B, Vincenzi G, Wennström JL, Chierico A, Stach RM, Kenealy JN. A prospective, multicenter, randomized-controlled 5-year study of hybrid and fully etched implants for the incidence of peri-implantitis. J Periodontol. 2010;81(4):493–501.

    Article  Google Scholar 

Download references

Conflict of interest statement

Gérard M. Scortecci is the inventor of the Diskimplant and holder of several associated patents that are exploited by the Victory company. He is an unpaid consultant to this firm and a minority shareholder in the company. No money was received from any of the companies mentioned in the book or from any of the companies whose products are mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard M. Scortecci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scortecci, G.M., Doglioli, P., Philip, P., Binderman, I. (2019). Biological Aspects. In: Scortecci, G. (eds) Basal Implantology. Springer, Cham. https://doi.org/10.1007/978-3-319-44873-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44873-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44871-8

  • Online ISBN: 978-3-319-44873-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics