Skip to main content

Shock-Wave Formation by Nanosecond Multichannel Surface Discharges

  • Conference paper
  • First Online:
30th International Symposium on Shock Waves 2

Abstract

The dynamics of shock waves arising due to the development of a system of microchannels of sliding surface discharge was investigated experimentally. The evolution of the flow field forming within 100 microseconds after the discharge initiation was studied in quiescent air and in airflow at velocities up to 1600 m/s at gas densities within 0.04–0.45 kg/m by the shadow technique, single frame, streak, multiframe (high-speed camera) modes. Particle image velocimetry (PIV) method has been applied to shock-wave quasi two-dimensional flow arising after discharge initiation in motionless air. Computational Fluid Dynamics two-dimensional (CFD 2D) simulation was based on a solution of Navier–Stokes equations. CFD simulation being matched with flow images showed that the energy input into the near-wall gas layer is comparable with the flow enthalpy at the tested experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moreau, E.: Airflow control by non-thermal plasma actuators. J. Phys. D. Appl. Phys. 40, 605–636 (2007)

    Article  Google Scholar 

  2. Semenov, V.E., Bondarenko, V.G., Gildenburg, V.B., Gubchenko, V.M., Smirnov, A.I.: Weakly ionized plasma in aerospace application. Plasma Phys. Control. Fusion 44, B239–B305 (2002)

    Article  Google Scholar 

  3. Znamenskaya, I.A., Latfullin, D.F., Lutsky, A.E., Mursenkova, I.V., Sysoev, N.N.: Development of gas dynamic perturbations propagating from a distributed sliding surface discharge. Tech. Phys. 52(5), 546–554 (2007)

    Article  Google Scholar 

  4. Znamenskaya, I.A., Latfullin, D.F., Lutskii, A.E., Mursenkova, I.V.: Energy deposition in boundary gas layer during initiation of nanosecond sliding surface discharge. Tech. Phys. Lett. 36(9), 795–797 (2010)

    Article  Google Scholar 

  5. Hirai, E., Nagai, N., Yamakoshi, H.: Power reduction of excimer lasers caused by electromagnetic shock waves due to repetitively pulsed discharge. Shock Waves, Marseille III, pp. 341–346 (1995)

    Google Scholar 

  6. Andreev, S.I., Znamenskaya, I.A., Kovalev, I.O., Korablyov, A.V., Kuzmin, G.P., Stepanets, I.V., Toker, G.R.: The propagation of shock waves in plasma of volume discharge. In: Proceedings of the 3rd All-Russia Meeting on Physics and Gas Dynamics of Shock Waves, Vladivostok, Chap. 2, pp. 68–73 (1996)

    Google Scholar 

  7. Arad, B., Gazit, Y., Ludmirsky, A.: A sliding discharge device for producing cylindrical shock waves. J. Phys. D. Appl. Phys. 20, 360 (1987)

    Article  Google Scholar 

  8. Glazyrin, F., Mursenkova, I., Znamenskaya, I.: Particle image velocimetry study of the shock wave emanating from open-ended shock tube. Vis. Mech. Process. 2, 4 (2012)

    Google Scholar 

  9. Takashima (Udagawa), K., Zuzeek, Y., Lempert, W.R., Adamovich, W.R.: Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses. Plasma Sources Sci. Technol. 20, 055009 (2011)

    Article  Google Scholar 

  10. Benard, N., Zouzou, N., Claverie, A., Sotton, J., Moreau, E.: Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications. J. Phys. D. Appl. Phys. 111, 033303 (2012)

    Article  Google Scholar 

  11. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamics flows. La Rech. Aerospatiale 1, 5–21 (1994)

    Google Scholar 

  12. Kudryashov, I.Y., Lutsky, A.E.: Mathematical simulation of turbulent separated transonic flows around the bodies of revolution. Math. Models Comput. Simul. 3(6), 690–696 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.V. Mursenkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lutsky, A., Mursenkova, I., Znamenskaya, I. (2017). Shock-Wave Formation by Nanosecond Multichannel Surface Discharges. In: Ben-Dor, G., Sadot, O., Igra, O. (eds) 30th International Symposium on Shock Waves 2. Springer, Cham. https://doi.org/10.1007/978-3-319-44866-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44866-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44864-0

  • Online ISBN: 978-3-319-44866-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics