Skip to main content

Experimental and Numerical Assessment of Aerothermal Environments About Jupiter Trojan Sample Return Capsule

  • Conference paper
  • First Online:
30th International Symposium on Shock Waves 2

Abstract

Sample return from asteroids and comets beyond the main belt is considered to be one of the most worthwhile future deep space missions [1]. Japan Aerospace Exploration Agency (JAXA) is currently entertaining a Jupiter Trojan sample return mission using a solar power sail [2], following the heritage of the Hayabusa sample return mission [3]. Because of high orbital energy corresponding to outer bodies, a sample return capsule (SRC) for such a future mission is expected to reenter the Earth’s atmosphere at velocities higher than 14 km/s and, hence, to encounter much severer aerodynamic heating environments than those of any past SRCs. Especially, the radiative heat transfer is considered to play a significant role in heat transfer processes in the shock layer, since the radiative heat transfer exponentially increases with the atmospheric flight velocity. To optimize the aerothermal design of the SRC and to minimize the mass of the thermal protection system (TPS) equipped with the SRC aeroshell, it is essentially required to accurately predict the aerothermal environments around the SRC along the reentry trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Committee on the Planetary Science Decadal Survey: Vision and voyages for planetary science in the decade 2013–2022. The National Academies, Washington DC (2011)

    Google Scholar 

  2. Kawaguchi, J., Power Sail Working Group: A solar power sail mission for a Jovian orbiter and Trojan asteroid flybys. IAC-04-Q.2.A.03. In: 55th International Astronautical Congress, Vancouver, Canada (2004)

    Google Scholar 

  3. Kawaguchi, J., Fujiwara, A., Uesugi, T.: Hayabusa - Its technology and science accomplishment summary and Hayabusa-2. IAC-06-A3.5.2. In: 57th International Astronautical Congress, Valencia, Spain (2006)

    Google Scholar 

  4. Fujita, K., Takayanagi, H., Matsuyama, S., Yamada, K., Abe, T.: Assessment of convective and radiative heating for Jupiter Trojan sample return capsule. AIAA Paper 2014–2673. In: 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Atlanta, USA (2014)

    Google Scholar 

  5. Detra, R.W., Kemp, N.H., Riddell, F.R.: Addendum to heat transfer to satellite vehicles reentering the atmosphere. Jet Propul. 27(12), 1256–1257 (1957)

    Google Scholar 

  6. Tauber, M.E., Sutton, K.: Stagnation-point radiative heating relations for earth and Mars entries. J. Spacecr. Rocket. 28(1), 40–42 (1991)

    Article  Google Scholar 

  7. Fujita, K., Suzuki, T., Matsuyama, S., Yamada, T., Abe, S.: Numerical reconstruction of Hayabusa sample return capsule flight environments. AIAA Paper 2011–3477. In: 42nd AIAA Thermophysics Conference, Honolulu, USA (2011)

    Google Scholar 

  8. Fujita, K., Sumi, T., Yamada, T., Ishii, N.: Heating environments of a venus entry capsule in a trail balloon mission. J. Thermophys. Heat Transf. 20(3), 507–516 (2006)

    Article  Google Scholar 

  9. Fujita, K., Matsuyama, S., Suzuki, T.: Prediction of forebody and aftbody heat transfer rate for Mars aerocapture demonstrator. AIAA Paper 2012–3001. In: 43rd AIAA Thermophysics Conference, New Orleans, USA (2012)

    Google Scholar 

  10. Park, C., Jaffe, R.L., Partridge, H.: Chemical-kinetic parameters of hyperbolic earth entry. J. Thermophys. Heat Transf. 15(1), 76–90 (2001)

    Article  Google Scholar 

  11. Fujita, K., Mizuno, M., Ishida, K., Ito, T.: Spectroscopic flow evaluation in inductively coupled plasma wind tunnel. J. Thermophys. Heat Transf. 22(4), 685–694 (2008)

    Article  Google Scholar 

  12. Fujita, K., Matsukawa, Y., Yamada, T., Ishii, N.: Evaluation of heat transfer rates of Venus entry capsules along flight trajectories. AIAA Paper 2006–3580. In: 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, San Francisco, USA (2006)

    Google Scholar 

  13. Nishimura, S., Takayanagi, H., Nomura, S., Fujita, K., Matsui, M.: Speeding up of shock wave for future missions and spectroscopic measurement of strong shock wave. ISTS Paper 2015-e-32. In: 30th International Symposium on Space Technology and Science, Kobe, Japan (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fujita, K., Takayanagi, H., Matsuyama, S., Nishimura, S., Yamada, K., Abe, T. (2017). Experimental and Numerical Assessment of Aerothermal Environments About Jupiter Trojan Sample Return Capsule. In: Ben-Dor, G., Sadot, O., Igra, O. (eds) 30th International Symposium on Shock Waves 2. Springer, Cham. https://doi.org/10.1007/978-3-319-44866-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44866-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44864-0

  • Online ISBN: 978-3-319-44866-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics