Skip to main content

Weak Formulation Revisited

  • Chapter
  • First Online:
  • 1392 Accesses

Part of the book series: Advances in Mathematical Fluid Mechanics ((LNMFM))

Abstract

In Chap. 3, we have introduced the weak formulation of both the equation of continuity (3.5) and the momentum balance (3.11). On the other hand, we have seen in Chap. 4 that regular solutions of the Navier–Stokes system satisfy also the renormalized equation of continuity (4.8), together with the total energy balance (4.10). Under the general hypothesis considered in this book, the piece of information encoded in (4.8) and (4.10) cannot be obtained directly from the weak formulation (3.5) and (3.11). Accordingly, it seems convenient to include both (4.8) and (4.10) in the definition of weak solutions to the problem (2.7), (2.8), (2.13)–(2.15) as a kind of additional admissibility criteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.A. Adams, Sobolev Spaces (Academic, New York, 1975)

    MATH  Google Scholar 

  2. S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Krajevyje zadaci mechaniki neodnorodnych zidkostej, Novosibirsk (1983)

    Google Scholar 

  3. Š. Axmann, M. Pokorný, Time-periodic solutions to the full Navier–Stokes–Fourier system with radiation on the boundary. J. Math. Anal. Appl. 428 (1), 414–444 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Babuška, The finite element method with penalty. Math. Comput. 27, 221–228 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Babuška, A.K. Aziz, Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) (Academic, New York, 1972), pp. 1–359. With the collaboration of G. Fix and R.B. Kellogg

    Google Scholar 

  6. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967)

    MATH  Google Scholar 

  7. D. Bresch, P.-E. Jabin, Global existence of weak solutions for compressible Navier–Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor (2015). Arxiv preprint No. 1507.04629v1

    Google Scholar 

  8. H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (North-Holland, Amsterdam, 1973)

    MATH  Google Scholar 

  9. H. Brezis, Analyse Fonctionnelle (Masson, Paris, 1987)

    MATH  Google Scholar 

  10. M.O. Bristeau, R. Glowinski, J. Périaux, Numerical methods for the Navier–Stokes equations. Applications to the simulation of compressible and incompressible viscous flows, in Finite Elements in Physics (Lausanne, 1986) (North-Holland, Amsterdam, 1987), pp. 73–187

    Google Scholar 

  11. M.O. Bristeau, R. Glowinski, L. Dutto, J. Périaux, G. Rogé, On recent numerical simulations of compressible Navier–Stokes flows, in Numerical Simulation of Unsteady Flows and Transition to Turbulence (Lausanne, 1990) (Cambridge University Press, Cambridge, 1992), pp. 443–472

    Google Scholar 

  12. C. Carlenzoli, A. Quarteroni, A. Valli, Numerical solution of the Navier–Stokes equations for viscous compressible flows, in Applied Mathematics in Aerospace Science and Engineering (Erice, 1991). Mathematical Concepts and Methods in Science and Engineering, vol. 44 (Plenum, New York, 1994), pp. 81–111

    Google Scholar 

  13. R.W. Carroll, Abstract Methods in Partial Differential Equations. Harper’s Series in Modern Mathematics (Harper & Row, New York, 1969)

    Google Scholar 

  14. G.-Q. Chen, H. Frid, On the theory of divergence-measure fields and its applications. Bol. Soc. Brasil. Mat. (N.S.) 32 (3), 401–433 (2001). Dedicated to Constantine Dafermos on his 60th birthday

    Google Scholar 

  15. N. Chikami, R. Danchin, On the well-posedness of the full compressible Navier–Stokes system in critical Besov spaces. J. Differ. Equ. 258 (10), 3435–3467 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Chiodaroli, O. Kreml, On the energy dissipation rate of solutions to the compressible isentropic Euler system. Arch. Ration. Mech. Anal. 214 (3), 1019–1049 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Chiodaroli, C. De Lellis, O. Kreml, Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68 (7), 1157–1190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Cho, H.J. Choe, H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. A.J. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Mechanics (Springer, New York, 1979)

    Book  MATH  Google Scholar 

  20. R. Danchin, Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Danchin, Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160 (1), 1–39 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Danchin, A Lagrangian approach for the compressible Navier–Stokes equations. Ann. Inst. Fourier (Grenoble) 64 (2), 753–791 (2014)

    Google Scholar 

  23. C. De Lellis, L. Székelyhidi, Jr., The Euler equations as a differential inclusion. Ann. Math. (2) 170 (3), 1417–1436 (2009)

    Google Scholar 

  24. C. De Lellis, L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195 (1), 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Diestel, Sequences and Series in Banach Spaces (Springer, New York, 1984)

    Book  MATH  Google Scholar 

  26. R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. R.E. Edwards, Functional Analysis (Holt-Rinehart-Winston, New York, 1965)

    MATH  Google Scholar 

  28. I. Ekeland, R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976)

    MATH  Google Scholar 

  29. S. Eliezer, A. Ghatak, H. Hora, An Introduction to Equations of States, Theory and Applications (Cambridge University Press, Cambridge, 1986)

    MATH  Google Scholar 

  30. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 1998)

    Google Scholar 

  31. L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions (CRC Press, Boca Raton, 1992)

    MATH  Google Scholar 

  32. C.L. Fefferman, Existence and smoothness of the Navier-Stokes equation, in The Millennium Prize Problems (Clay Mathematics Institute, Cambridge, 2006), pp. 57–67

    MATH  Google Scholar 

  33. E. Feireisl, Compressible Navier–Stokes equations with a non-monotone pressure law. J. Differ. Equ. 184, 97–108 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  35. E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids (Birkhäuser, Basel, 2009)

    Book  MATH  Google Scholar 

  36. E. Feireisl, Š. Matuš˚u-Nečasová, H. Petzeltová, I. Straškraba, On the motion of a viscous compressible flow driven by a time-periodic external flow. Arch. Ration. Mech. Anal. 149, 69–96 (1999)

    Google Scholar 

  37. E. Feireisl, A. Novotný, H. Petzeltová, On the domain dependence of solutions to the compressible Navier–Stokes equations of a barotropic fluid. Math. Methods Appl. Sci. 25, 1045–1073 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. E. Feireisl, A. Novotný, Y. Sun, Suitable weak solutions to the Navier–Stokes equations of compressible viscous fluids. Indiana Univ. Math. J., 60, 611–631 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. E. Feireisl, B.J. Jin, A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech. 14, 712–730 (2012)

    MathSciNet  MATH  Google Scholar 

  40. E. Feireisl, P. Mucha, A. Novotný, M. Pokorný, Time periodic solutions to the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 204, 745–786 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Feistauer, J. Felcman, M. Lukáčová-Medviďová, Combined finite element–finite volume solution of compressible flow. J. Comput. Appl. Math. 63 (1–3), 179–199 (1995). International Symposium on Mathematical Modelling and Computational Methods Modelling 94 (Prague, 1994)

    Google Scholar 

  42. M. Feistauer, J. Felcman, I. Straškraba, Mathematical and Computational Methods for Compressible Flow (Oxford Science Publications, Oxford, 2003)

    MATH  Google Scholar 

  43. I. Fleischer, J.E. Porter, Convergence of metric space-valued BV functions. Real Anal. Exch. 27 (1), 315–319 (2001/02)

    Google Scholar 

  44. J. Frehse, M. Steinhauer, W. Weigant, The Dirichlet problem for steady viscous compressible flow in three dimensions. J. Math. Pures Appl. (9) 97 (2), 85–97 (2012)

    Google Scholar 

  45. H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie, Berlin, 1974)

    MATH  Google Scholar 

  46. G. Gallavotti, Statistical Mechanics: A Short Treatise (Springer, Heidelberg, 1999)

    Book  MATH  Google Scholar 

  47. G. Gallavotti, Foundations of Fluid Dynamics (Springer, New York, 2002)

    Book  MATH  Google Scholar 

  48. P. Germain, Weak-strong uniqueness for the isentropic compressible Navier–Stokes system. J. Math. Fluid Mech. 13 (1), 137–146 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. V. Girinon, Navier–Stokes equations with nonhomogeneous boundary conditions in a bounded three-dimensional domain. J. Math. Fluid Mech. 13 (3), 309–339 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Gurris, D. Kuzmin, S. Turek, Implicit finite element schemes for the stationary compressible Euler equations. Int. J. Numer. Methods Fluids 69 (1), 1–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. R. Herbin, W. Kheriji, J.-C. Latché, On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations. ESAIM Math. Model. Numer. Anal. 48, 1807–1857 (2014). Published on-line

    Google Scholar 

  52. D. Hoff, Dynamics of singularity surfaces for compressible viscous flows in two space dimensions. Commun. Pure Appl. Math. 55, 1365–1407 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. D. Hoff, Uniqueness of weak solutions of the Navier–Stokes equations of multidimensional, compressible flow. SIAM J. Math. Anal. 37, 1742–1760 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. D. Hoff, M.M. Santos, Lagrangean structure and propagation of singularities in multidimensional compressible flow. Arch. Ration. Mech. Anal. 188 (3), 509–543 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. D. Hoff, J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations. Commun. Math. Phys. 216 (2), 255–276 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. D. Jesslé, A. Novotný, Existence of renormalized weak solutions to the steady equations describing compressible fluids in barotropic regime. J. Math. Pures Appl. (9) 99 (3), 280–296 (2013)

    Google Scholar 

  57. D. Jesslé, A. Novotný, M. Pokorný, Steady Navier–Stokes–Fourier system with slip boundary conditions. Math. Models Methods Appl. Sci. 24 (4), 751–781 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. T.K. Karper, A convergent FEM-DG method for the compressible Navier–Stokes equations. Numer. Math. 125 (3), 441–510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. A.V. Kazhikhov, Correctness “in the large” of mixed boundary value problems for a model system of equations of a viscous gas. Dinamika Splošn. Sredy 21 (Tecenie Zidkost. so Svobod. Granicami), 18–47, 188 (1975)

    Google Scholar 

  60. J.L. Kelley, General Topology (Van Nostrand, Inc., Princeton, 1957)

    MATH  Google Scholar 

  61. B. Kellogg, B. Liu, The analysis of a finite element method for the Navier–Stokes equations with compressibility. Numer. Math. 87 (1), 153–170 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  62. G. Kothe, Topological Vector Spaces I (Springer, Heidelberg, 1969)

    MATH  Google Scholar 

  63. S.N. Kruzhkov, First order quasilinear equations in several space variables (in Russian). Math. Sbornik 81, 217–243 (1970)

    Article  MATH  Google Scholar 

  64. A. Kufner, O. John, S. Fučík, Function Spaces. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis (Noordhoff International Publishing, Leyden, 1977)

    Google Scholar 

  65. H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, 1932)

    MATH  Google Scholar 

  66. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1968)

    MATH  Google Scholar 

  67. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  68. P.-L. Lions, Mathematical Topics in Fluid Dynamics, Vol.2, Compressible Models (Oxford Science Publication, Oxford, 1998)

    Google Scholar 

  69. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  70. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of compressible and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  71. A. Matsumura, M. Padula, Stability of stationary flow of compressible fluids subject to large external potential forces. Stab. Appl. Anal. Continuous Media 2, 183–202 (1992)

    Google Scholar 

  72. V.G. Maz’ya, Sobolev Spaces (Springer, Berlin, 1985)

    MATH  Google Scholar 

  73. P.B. Mucha, W. Zajaczkowski, On local-in-time existence for the Dirichlet problem for equations of compressible viscous fluids. Ann. Polon. Math. 78 (3), 227–239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  74. F. Murat, Compacité par compensation. Ann. Sc. Norm. Sup. Pisa Cl. Sci. Ser. 5 IV, 489–507 (1978)

    Google Scholar 

  75. J. Nečas, Les méthodes directes en théorie des équations elliptiques (Academia, Praha, 1967)

    Google Scholar 

  76. S. Novo, Compressible Navier–Stokes model with inflow-outflow boundary conditions. J. Math. Fluid Mech. 7 (4), 485–514 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  77. A. Novotný, M. Pokorný, Steady compressible Navier-Stokes-Fourier system for monoatomic gas and its generalizations. J. Differ. Equ. 251 (2), 270–315 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  78. A. Novotný, M. Pokorný, Weak and variational solutions to steady equations for compressible heat conducting fluids. SIAM J. Math. Anal. 43 (3), 1158–1188 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  79. A. Novotný, I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  80. P. Pedregal, Parametrized Measures and Variational Principles (Birkhäuser, Basel, 1997)

    Book  MATH  Google Scholar 

  81. P.I. Plotnikov, W. Weigant, Isothermal Navier–Stokes equations and Radon transform. SIAM J. Math. Anal. 47 (1), 626–653 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  82. P.I. Plotnikov, W. Weigant, Steady 3D viscous compressible flows with adiabatic exponent γ ∈ (1, ). J. Math. Pures Appl. (9) 104 (1), 58–82 (2015)

    Google Scholar 

  83. N.V. Priezjev, S.M. Troian, Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)

    Article  MATH  Google Scholar 

  84. R. Salvi, I. Straškraba, Global existence for viscous compressible fluids and their behaviour as t → . J. Fac. Sci. Tokyo Sect. IA Math. 40, 17–51 (1993)

    Google Scholar 

  85. J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, New York, 1967)

    MATH  Google Scholar 

  86. E.M. Stein, Singular Integrals and Differential Properties of Functions (Princeton University Press, Princeton, 1970)

    MATH  Google Scholar 

  87. Y. Sun, C. Wang, Z. Zhang, A Beale–Kato–Majda criterion for the 3-D compressible Navier–Stokes equations. J. Math. Pures Appl. 95 (1), 36–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  88. A. Tani, On the first initial-boundary value problem of compressible viscous fluid motion. Publ. RIMS Kyoto Univ. 13, 193–253 (1977)

    Article  MATH  Google Scholar 

  89. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, ed. by L.J. Knopps. Research Notes in Mathematics, vol. 39 (Pitman, Boston, 1975), pp. 136–211

    Google Scholar 

  90. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (VEB Deutscher Verlag der Wissenschaften, Berlin, 1978)

    MATH  Google Scholar 

  91. C. Truesdell, The Elements of Continuum Mechanics (Springer, New York, 1966)

    MATH  Google Scholar 

  92. C. Truesdell, A First Course in Rational Continuum Mechanics (Academic, New York, 1991)

    MATH  Google Scholar 

  93. C. Truesdell, K.R. Rajagopal, An Introduction to the Mechanics of Fluids (Birkhäuser, Boston, 2000)

    Book  MATH  Google Scholar 

  94. V.A. Vaigant, A.V. Kazhikhov, On the existence of global solutions to two-dimensional Navier–Stokes equations of a compressible viscous fluid (in Russian). Sibirskij Mat. Z. 36 (6), 1283–1316 (1995)

    MathSciNet  MATH  Google Scholar 

  95. A. Valli, An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. (4) 130, 197–213 (1982)

    Google Scholar 

  96. A. Valli, A correction to the paper: “An existence theorem for compressible viscous fluids” [Ann. Mat. Pura Appl. (4) 130, 197–213 (1982); MR 83h:35112]. Ann. Mat. Pura Appl. (4) 132, 399–400 (1983)

    Google Scholar 

  97. A. Valli, M. Zajaczkowski, Navier–Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  98. H. Wen, C. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier–Stokes equations with vacuum. Adv. Math. 248, 534–572 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  99. W.P. Ziemer, Weakly Differentiable Functions (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  100. A.A. Zlotnik, A.A. Amosov, Generalized solutions “in the large” of equations of the one-dimensional motion of a viscous barotropic gas. Dokl. Akad. Nauk SSSR 299 (6), 1303–1307 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feireisl, E., Karper, T.G., Pokorný, M. (2016). Weak Formulation Revisited. In: Mathematical Theory of Compressible Viscous Fluids. Advances in Mathematical Fluid Mechanics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-44835-0_5

Download citation

Publish with us

Policies and ethics