Skip to main content

Fibrous Proliferations

  • Chapter
  • First Online:
  • 1638 Accesses

Abstract

This chapter addresses the manifold cutaneous fibrous proliferations encountered in the pediatric population. A wide range of hamartomas and other benign and neoplastic proliferations are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McCuaig CC, Vera C, Kokta V, Marcoux D, Hatami A, Thuraisingam T, Marton D, Fortier-Riberdy G, Powell J. Connective tissue nevi in children: institutional experience and review. J Am Acad Dermatol. 2012;67(5):890–7.

    Article  PubMed  Google Scholar 

  2. Boente Mdel C, Primc NB, Asial RA, Winik BC. Familial cutaneous collagenoma: a clinicopathologic study of two new cases. Pediatr Dermatol. 2004;21(1):33–8.

    Article  PubMed  Google Scholar 

  3. Shelley WB, Shelley ED, Swaminathan R. Myofibroblasts in a collagen nevus detected by electron microscopy. J Am Acad Dermatol. 1985;12(5 Pt 2):917–21.

    Article  CAS  PubMed  Google Scholar 

  4. Foo CC, Kumarasinghe SP. Juvenile elastoma: a forme fruste of the Buschke-Ollendorff syndrome? Australas J Dermatol. 2005;46(4):250–2.

    Article  PubMed  Google Scholar 

  5. Kobayasi T, Bartosik J, Ullman S. Elastic fibers in dermis of juvenile elastoma. J Dermatol. 1998;25(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  6. Yokogawa M, Kamakura T, Ishiguro H, Ikeda M, Kodama H. Mucinous nevus. J Dermatol. 2005;32(1):30–3.

    Article  PubMed  Google Scholar 

  7. Chi CC, Wang SH, Lin PY. Combined epidermal-connective tissue nevus of proteoglycan (a type of mucinous nevus): a case report and literature review. J Cutan Pathol. 2009;36(7):808–11.

    Article  PubMed  Google Scholar 

  8. de Feraudy S, Fletcher CD. Fibroblastic connective tissue nevus: a rare cutaneous lesion analyzed in a series of 25 cases. Am J Surg Pathol. 2012;36(10):1509–15.

    Article  PubMed  Google Scholar 

  9. Chu DH, Goldbach H, Wanat KA, Rubin AI, Yan AC, Treat JR. A new variant of connective tissue nevus with elastorrhexis and predilection for the upper chest. Pediatr Dermatol. 2014;32(4):518–21.

    Article  PubMed  Google Scholar 

  10. Saussine A, Marrou K, Delanoe P, Bodak N, Hamel D, Picard A, Sassolas B, de Prost Y, Lemerrer M, Fraitag S, Bodemer C. Connective tissue nevi: an entity revisited. J Am Acad Dermatol. 2011;67(2):233–9.

    Article  PubMed  Google Scholar 

  11. Biesecker LG. The multifaceted challenges of Proteus syndrome. JAMA. 2001;285(17):2240–3.

    Article  CAS  PubMed  Google Scholar 

  12. Nguyen D, Turner JT, Olsen C, Biesecker LG, Darling TN. Cutaneous manifestations of proteus syndrome: correlations with general clinical severity. Arch Dermatol. 2004;140(8):947–53.

    Article  PubMed  Google Scholar 

  13. English RS, Shenefelt PD. Keloids and hypertrophic scars. Dermatol Surg. 1999;25(8):631–8.

    Article  CAS  PubMed  Google Scholar 

  14. Bhangoo KS, Quinlivan JK, Connelly JR. Elastin fibers in scar tissue. Plast Reconstr Surg. 1976;57(3):308–13.

    Article  CAS  PubMed  Google Scholar 

  15. Ehrlich HP, Desmouliere A, Diegelmann RF, Cohen IK, Compton CC, Garner WL, Kapanci Y, Gabbiani G. Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol. 1994;145(1):105–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Louw L. Keloids in rural black South Africans. Part 3: a lipid model for the prevention and treatment of keloid formations. Prostaglandins Leukot Essent Fatty Acids. 2000;63(5):255–62.

    Article  CAS  PubMed  Google Scholar 

  17. Huang C, Ogawa R. Roles of lipid metabolism in keloid development. Lipids Health Dis. 2013;12:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang C, Ogawa R. The link between hypertension and pathological scarring: does hypertension cause or promote keloid and hypertrophic scar pathogenesis? Wound Repair Regen. 2014;22(4):462–6.

    Article  CAS  PubMed  Google Scholar 

  19. Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007;117(12):3810–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou G, Dada LA, Wu M, Kelly A, Trejo H, Zhou Q, Varga J, Sznajder JI. Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. Am J Physiol Lung Cell Mol Physiol. 2009;297(6):L1120–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qu M, Song N, Chai G, Wu X, Liu W. Pathological niche environment transforms dermal stem cells to keloid stem cells: a hypothesis of keloid formation and development. Med Hypotheses. 2013;81(5):807–12.

    Article  CAS  PubMed  Google Scholar 

  22. Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe-Heider F, Biernaskie J, Junek A, Kobayashi NR, Toma JG, Kaplan DR, Labosky PA, Rafuse V, Hui CC, Miller FD. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004;6(11):1082–93.

    Article  CAS  PubMed  Google Scholar 

  23. Moon JH, Kwak SS, Park G, Jung HY, Yoon BS, Park J, Ryu KS, Choi SC, Maeng I, Kim B, Jun EK, Kim S, Kim A, Oh S, Kim H, Kim KD, You S. Isolation and characterization of multipotent human keloid-derived mesenchymal-like stem cells. Stem Cells Dev. 2008;17(4):713–24.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Q, Yamaza T, Kelly AP, Shi S, Wang S, Brown J, Wang L, French SW, Le AD. Tumor-like stem cells derived from human keloid are governed by the inflammatory niche driven by IL-17/IL-6 axis. PLoS One. 2009;4(11), e7798.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ghazizadeh M, Tosa M, Shimizu H, Hyakusoku H, Kawanami O. Functional implications of the IL-6 signaling pathway in keloid pathogenesis. J Invest Dermatol. 2007;127(1):98–105.

    Article  CAS  PubMed  Google Scholar 

  26. Xue H, McCauley RL, Zhang W. Elevated interleukin-6 expression in keloid fibroblasts. J Surg Res. 2000;89(1):74–7.

    Article  CAS  PubMed  Google Scholar 

  27. Gabriel V. Hypertrophic scar. Phys Med Rehabil Clin N Am. 2011;22(2):301–10. vi.

    Article  PubMed  Google Scholar 

  28. Honardoust D, Varkey M, Hori K, Ding J, Shankowsky HA, Tredget EE. Small leucine-rich proteoglycans, decorin and fibromodulin, are reduced in postburn hypertrophic scar. Wound Repair Regen. 2011;19(3):368–78.

    Article  PubMed  Google Scholar 

  29. Scott PG, Dodd CM, Tredget EE, Ghahary A, Rahemtulla F. Immunohistochemical localization of the proteoglycans decorin, biglycan and versican and transforming growth factor-beta in human post-burn hypertrophic and mature scars. Histopathology. 1995;26(5):423–31.

    Article  CAS  PubMed  Google Scholar 

  30. Ghaffari A, Li Y, Karami A, Ghaffari M, Tredget EE, Ghahary A. Fibroblast extracellular matrix gene expression in response to keratinocyte-releasable stratifin. J Cell Biochem. 2006;98(2):383–93.

    Article  CAS  PubMed  Google Scholar 

  31. Armour A, Scott PG, Tredget EE. Cellular and molecular pathology of HTS: basis for treatment. Wound Repair Regen. 2007;15 Suppl 1:S6–17.

    Article  PubMed  Google Scholar 

  32. Graf K, Schaefer-Graf UM. Is Smad3 the key to inflammation and fibrosis in hypertensive heart disease? Hypertension. 2010;55(5):1088–9.

    Article  CAS  PubMed  Google Scholar 

  33. Rabello FB, Souza CD, Farina Junior JA. Update on hypertrophic scar treatment. Clinics (Sao Paulo). 2014;69(8):565–73.

    Article  Google Scholar 

  34. Moulin V, Larochelle S, Langlois C, Thibault I, Lopez-Valle CA, Roy M. Normal skin wound and hypertrophic scar myofibroblasts have differential responses to apoptotic inductors. J Cell Physiol. 2004;198(3):350–8.

    Article  CAS  PubMed  Google Scholar 

  35. Wang H, Chen Z, Li XJ, Ma L, Tang YL. Anti-inflammatory cytokine TSG-6 inhibits hypertrophic scar formation in a rabbit ear model. Eur J Pharmacol. 2015;751:42–9.

    Article  CAS  PubMed  Google Scholar 

  36. Milner CM, Day AJ. TSG-6: a multifunctional protein associated with inflammation. J Cell Sci. 2003;116(Pt 10):1863–73.

    Article  CAS  PubMed  Google Scholar 

  37. Han TY, Chang HS, Lee JH, Lee WM, Son SJ. A clinical and histopathological study of 122 cases of dermatofibroma (benign fibrous histiocytoma). Ann Dermatol. 2011;23(2):185–92.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Finch J, Berke A, McCusker M, Chang MW. Congenital multiple clustered dermatofibroma in a 12-year-old girl. Pediatr Dermatol. 2014;31(1):105–6.

    Article  PubMed  Google Scholar 

  39. Iwata J, Fletcher CD. Lipidized fibrous histiocytoma: clinicopathologic analysis of 22 cases. Am J Dermatopathol. 2000;22(2):126–34.

    Article  CAS  PubMed  Google Scholar 

  40. Alves JV, Matos DM, Barreiros HF, Bartolo EA. Variants of dermatofibroma–a histopathological study. An Bras Dermatol. 2014;89(3):472–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Talati H, El Demellawy D, Jansen J, Alowami S. Dermatofibroma with diffuse eosinophilia. Eur J Dermatol. 2011;21(1):138–9.

    PubMed  Google Scholar 

  42. Tardio JC, Azorin D, Hernandez-Nunez A, Guzman A, Torrelo A, Herraiz M, Espinosa P, Moreno A, Granados R, Colmenero I. Dermatomyofibromas presenting in pediatric patients: clinicopathologic characteristics and differential diagnosis. J Cutan Pathol. 2011;38(12):967–72.

    Article  PubMed  Google Scholar 

  43. Zelger BW, Staudacher C, Orchard G, Wilson-Jones E, Burgdorf WH. Solitary and generalized variants of spindle cell xanthogranuloma (progressive nodular histiocytosis). Histopathology. 1995;27(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  44. Zelger B, Zelger BG, Burgdorf WH. Dermatofibroma-a critical evaluation. Int J Surg Pathol. 2004;12(4):333–44.

    Article  PubMed  Google Scholar 

  45. Chen TC, Kuo T, Chan HL. Dermatofibroma is a clonal proliferative disease. J Cutan Pathol. 2000;27(1):36–9.

    Article  CAS  PubMed  Google Scholar 

  46. Yamamoto T, Katayama I, Nishioka K. Involvement of basic fibroblast growth factor in fibroblast-stimulatory serum activity of a patient with systemic lupus erythematosus and multiple dermatofibromas. Dermatology. 1995;191(4):281–5.

    Article  CAS  PubMed  Google Scholar 

  47. Kubo M, Ihn H, Yamane K, Tamaki K. The expression levels and the differential expression of transforming growth factor-beta receptors in dermatofibroma and dermatofibrosarcoma protuberans. Br J Dermatol. 2006;154(5):919–25.

    Article  CAS  PubMed  Google Scholar 

  48. Sellheyer K, Smoller BR. Dermatofibroma: upregulation of syndecan-1 expression in mesenchymal tissue. Am J Dermatopathol. 2003;25(5):392–8.

    Article  PubMed  Google Scholar 

  49. Skroza N, Rotolo S, Ceccarelli S, Romano F, Innocenzi D, Frati L, Angeloni A, Marchese C. Modulation of the expression of the FGFR2-IIIb and FGFR2-IIIc molecules in dermatofibroma. J Dermatol Sci. 2008;51(1):53–7.

    Article  CAS  PubMed  Google Scholar 

  50. Yamamoto T, Katayama I, Nishioka K. Possible involvement of interleukin-1 in the pathogenesis of dermatofibroma. Acta Derm Venereol. 1998;78(2):99–102.

    Article  CAS  PubMed  Google Scholar 

  51. Walther C, Hofvander J, Nilsson J, Magnusson L, Domanski HA, Gisselsson D, Tayebwa J, Doyle LA, Fletcher CD, Mertens F. Gene fusion detection in formalin-fixed paraffin-embedded benign fibrous histiocytomas using fluorescence in situ hybridization and RNA sequencing. Lab Invest. 2015;95(9):1071–6.

    Article  CAS  PubMed  Google Scholar 

  52. Doyle LA, Marino-Enriquez A, Fletcher CD, Hornick JL. ALK rearrangement and overexpression in epithelioid fibrous histiocytoma. Mod Pathol. 2015;28(7):904–12.

    Article  CAS  PubMed  Google Scholar 

  53. Szablewski V, Laurent-Roussel S, Rethers L, Rommel A, Van Eeckhout P, Camboni A, Willocz P, Copie-Bergman C, Ortonne N. Atypical fibrous histiocytoma of the skin with CD30 and p80/ALK1 positivity and ALK gene rearrangement. J Cutan Pathol. 2014;41(9):715–9.

    Article  PubMed  Google Scholar 

  54. Sim JH, Shin J, Vandersteen DP, Kim YC. Development of dermatomyofibroma in a male infant. Ann Dermatol. 2011;23 Suppl 1:S72–4.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Colome MI, Sanchez RL. Dermatomyofibroma: report of two cases. J Cutan Pathol. 1994;21(4):371–6.

    Article  CAS  PubMed  Google Scholar 

  56. Mentzel T, Kutzner H. Dermatomyofibroma: clinicopathologic and immunohistochemical analysis of 56 cases and reappraisal of a rare and distinct cutaneous neoplasm. Am J Dermatopathol. 2009;31(1):44–9.

    Article  PubMed  Google Scholar 

  57. Kamino H, Reddy VB, Gero M, Greco MA. Dermatomyofibroma. A benign cutaneous, plaque-like proliferation of fibroblasts and myofibroblasts in young adults. J Cutan Pathol. 1992;19(2):85–93.

    Article  CAS  PubMed  Google Scholar 

  58. Velez MJ, Billings SD, Weaver JA. Fibroblastic connective tissue nevus. J Cutan Pathol. 2016;43(1):75–9.

    Article  PubMed  Google Scholar 

  59. Moles-Poveda P, Noguera L, Torrelo A. Spontaneous regression of an infantile scalp tumor. Infantile myofibromatosis. JAMA Dermatol. 2015;151(6):663–4.

    Article  PubMed  Google Scholar 

  60. Mashiah J, Hadj-Rabia S, Dompmartin A, Harroche A, Laloum-Grynberg E, Wolter M, Amoric JC, Hamel-Teillac D, Guero S, Fraitag S, Bodemer C. Infantile myofibromatosis: a series of 28 cases. J Am Acad Dermatol. 2014;71(2):264–70.

    Article  PubMed  Google Scholar 

  61. Chung EB, Enzinger FM. Infantile myofibromatosis. Cancer. 1981;48(8):1807–18.

    Article  CAS  PubMed  Google Scholar 

  62. Mynatt CJ, Feldman KA, Thompson LD. Orbital infantile myofibroma: a case report and clinicopathologic review of 24 cases from the literature. Head Neck Pathol. 2011;5(3):205–15.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zelger BW, Calonje E, Sepp N, Fink FM, Zelger BG, Schmid KW. Monophasic cellular variant of infantile myofibromatosis. An unusual histopathologic pattern in two siblings. Am J Dermatopathol. 1995;17(2):131–8.

    Article  CAS  PubMed  Google Scholar 

  64. Bellman B, Wooming G, Landsman L, Penneys N, Schachner LA. Infantile myofibromatosis: a case report. Pediatr Dermatol. 1991;8(4):306–9.

    Article  CAS  PubMed  Google Scholar 

  65. Beham A, Badve S, Suster S, Fletcher CD. Solitary myofibroma in adults: clinicopathological analysis of a series. Histopathology. 1993;22(4):335–41.

    Article  CAS  PubMed  Google Scholar 

  66. Wiswell TE, Davis J, Cunningham BE, Solenberger R, Thomas PJ. Infantile myofibromatosis: the most common fibrous tumor of infancy. J Pediatr Surg. 1988;23(4):315–8.

    Article  CAS  PubMed  Google Scholar 

  67. Cheung YH, Gayden T, Campeau PM, LeDuc CA, Russo D, Nguyen VH, Guo J, Qi M, Guan Y, Albrecht S, Moroz B, Eldin KW, Lu JT, Schwartzentruber J, Malkin D, Berghuis AM, Emil S, Gibbs RA, Burk DL, Vanstone M, Lee BH, Orchard D, Boycott KM, Chung WK, Jabado N. A recurrent PDGFRB mutation causes familial infantile myofibromatosis. Am J Hum Genet. 2013;92(6):996–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martignetti JA, Tian L, Li D, Ramirez MC, Camacho-Vanegas O, Camacho SC, Guo Y, Zand DJ, Bernstein AM, Masur SK, Kim CE, Otieno FG, Hou C, Abdel-Magid N, Tweddale B, Metry D, Fournet JC, Papp E, McPherson EW, Zabel C, Vaksmann G, Morisot C, Keating B, Sleiman PM, Cleveland JA, Everman DB, Zackai E, Hakonarson H. Mutations in PDGFRB cause autosomal-dominant infantile myofibromatosis. Am J Hum Genet. 2013;92(6):1001–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee JW. Mutations in PDGFRB and NOTCH3 are the first genetic causes identified for autosomal dominant infantile myofibromatosis. Clin Genet. 2013;84(4):340–1.

    Article  CAS  PubMed  Google Scholar 

  70. Jurado SA, Alvin GK, Selim MA, Pipkin CA, Kress D, Jamora MJ, Billings SD. Fibroblastic rheumatism: a report of 4 cases with potential therapeutic implications. J Am Acad Dermatol. 2012;66(6):959–65.

    Article  PubMed  Google Scholar 

  71. Colonna L, Barbieri C, Di Lella G, Zambruno G, Annessi G, Puddu P. Fibroblastic rheumatism: a case without rheumatological symptoms. Acta Derm Venereol. 2002;82(3):200–3.

    Article  PubMed  Google Scholar 

  72. Lacour JP, Maquart FX, Bellon G, Gillery P, Lepeytre P, Ziegler G, Ortonne JP. Fibroblastic rheumatism: clinical, histological, immunohistological, ultrastructural and biochemical study of a case. Br J Dermatol. 1993;128(2):194–202.

    Article  CAS  PubMed  Google Scholar 

  73. du Toit R, Schneider JW, Whitelaw DA. Fibroblastic rheumatism. J Clin Rheumatol. 2006;12(4):201–3.

    Article  PubMed  Google Scholar 

  74. Kluger N, Dumas-Tesici A, Hamel D, Brousse N, Fraitag S. Fibroblastic rheumatism: fibromatosis rather than non-Langerhans cell histiocytosis. J Cutan Pathol. 2010;37(5):587–92.

    Article  PubMed  Google Scholar 

  75. Lee JM, Sundel RP, Liang MG. Fibroblastic rheumatism: case report and review of the literature. Pediatr Dermatol. 2002;19(6):532–5.

    Article  PubMed  Google Scholar 

  76. Marconi IM, Rivitti-Machado MC, Sotto MN, Nico MM. Fibroblastic rheumatism. Clin Exp Dermatol. 2009;34(1):29–32.

    Article  CAS  PubMed  Google Scholar 

  77. Zelger B, Burgdorf W. Fibroblastic rheumatism: a variant of non-Langerhans cell histiocytoses? Pediatr Dermatol. 2003;20(5):461–2.

    Article  PubMed  Google Scholar 

  78. Jurado SA, Alvin GK, Selim MA, Pipkin CA, Kress D, Jamora MJ, Billings SD. Fibroblastic rheumatism: a report of 4 cases with potential therapeutic implications. J Am Acad Dermatol. 2011;66(6):959–65.

    Article  PubMed  Google Scholar 

  79. Vittecoq O, Mejjad O, da Silva F, Joly P, Thomine E, Lauret P, Thomine JM, le Loet X. Preliminary experience with low-dose methotrexate in fibroblastic rheumatism. Arthritis Rheum. 1996;39(12):2070–3.

    Article  CAS  PubMed  Google Scholar 

  80. Romas E, Finlay M, Woodruff T. The arthropathy of fibroblastic rheumatism. Arthritis Rheum. 1997;40(1):183–7.

    Article  CAS  PubMed  Google Scholar 

  81. Darling TN, Skarulis MC, Steinberg SM, Marx SJ, Spiegel AM, Turner M. Multiple facial angiofibromas and collagenomas in patients with multiple endocrine neoplasia type 1. Arch Dermatol. 1997;133(7):853–7.

    Article  CAS  PubMed  Google Scholar 

  82. Jozwiak S, Schwartz RA, Janniger CK, Michalowicz R, Chmielik J. Skin lesions in children with tuberous sclerosis complex: their prevalence, natural course, and diagnostic significance. Int J Dermatol. 1998;37(12):911–7.

    Article  CAS  PubMed  Google Scholar 

  83. Leung AK, Barankin B. Pearly penile papules. J Pediatr. 2014;165(2):409.

    Article  PubMed  Google Scholar 

  84. Kakurai M, Yamada T, Kiyosawa T, Ohtsuki M, Nakagawa H. Giant acquired digital fibrokeratoma. J Am Acad Dermatol. 2003;48(5 Suppl):S67–8.

    Article  PubMed  Google Scholar 

  85. Bansal C, Stewart D, Li A, Cockerell CJ. Histologic variants of fibrous papule. J Cutan Pathol. 2005;32(6):424–8.

    Article  PubMed  Google Scholar 

  86. Chiang YY, Tsai HH, Lee WR, Wang KH. Clear cell fibrous papule: report of a case mimicking a balloon cell nevus. J Cutan Pathol. 2009;36(3):381–4.

    Article  PubMed  Google Scholar 

  87. Jacyk WK, Rutten A, Requena L. Fibrous papule of the face with granular cells. Dermatology. 2008;216(1):56–9.

    Article  CAS  PubMed  Google Scholar 

  88. Kucher C, McNiff JM. Epithelioid fibrous papule – a new variant. J Cutan Pathol. 2007;34(7):571–5.

    Article  PubMed  Google Scholar 

  89. Graham JH, Sanders JB, Johnson WC, Helwig EB. Fibrous papule of the nose: a clinicopathological study. J Invest Dermatol. 1965;45(3):194–203.

    Article  CAS  PubMed  Google Scholar 

  90. Nickel WR, Reed WB. Tuberous sclerosis. Special reference to the microscopic alterations in the cutaneous hamartomas. Arch Dermatol. 1962;85:209–26.

    Article  CAS  PubMed  Google Scholar 

  91. The European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell. 1993; 75(7): 1305–15

    Google Scholar 

  92. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van den Ouweland A, Halley D, Young J, Burley M, Jeremiah S, Woodward K, Nahmias J, Fox M, Ekong R, Osborne J, Wolfe J, Povey S, Snell RG, Cheadle JP, Jones AC, Tachataki M, Ravine D, Sampson JR, Reeve MP, Richardson P, Wilmer F, Munro C, Hawkins TL, Sepp T, Ali JB, Ward S, Green AJ, Yates JR, Kwiatkowska J, Henske EP, Short MP, Haines JH, Jozwiak S, Kwiatkowski DJ. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277(5327):805–8.

    Article  PubMed  Google Scholar 

  93. Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet. 2005;37(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  94. Kenerson HL, Aicher LD, True LD, Yeung RS. Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res. 2002;62(20):5645–50.

    CAS  PubMed  Google Scholar 

  95. Chan JY, Wang KH, Fang CL, Chen WY. Fibrous papule of the face, similar to tuberous sclerosis complex-associated angiofibroma, shows activation of the mammalian target of rapamycin pathway: evidence for a novel therapeutic strategy? PLoS One. 2014;9(2), e89467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Haemel AK, O’Brian AL, Teng JM. Topical rapamycin: a novel approach to facial angiofibromas in tuberous sclerosis. Arch Dermatol. 2010;146(7):715–8.

    Article  PubMed  Google Scholar 

  97. Tu J, Foster RS, Bint LJ, Halbert AR. Topical rapamycin for angiofibromas in paediatric patients with tuberous sclerosis: follow up of a pilot study and promising future directions. Australas J Dermatol. 2013;55(1):63–9.

    Article  PubMed  Google Scholar 

  98. Tyburczy ME, Wang JA, Li S, Thangapazham R, Chekaluk Y, Moss J, Kwiatkowski DJ, Darling TN. Sun exposure causes somatic second-hit mutations and angiofibroma development in tuberous sclerosis complex. Hum Mol Genet. 2013;23(8):2023–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. DiMario Jr FJ, Sahin M, Ebrahimi-Fakhari D. Tuberous sclerosis complex. Pediatr Clin North Am. 2015;62(3):633–48.

    Article  PubMed  Google Scholar 

  100. Yang P, Cornejo KM, Sadow PM, Cheng L, Wang M, Xiao Y, Jiang Z, Oliva E, Jozwiak S, Nussbaum RL, Feldman AS, Paul E, Thiele EA, Yu JJ, Henske EP, Kwiatkowski DJ, Young RH, Wu CL. Renal cell carcinoma in tuberous sclerosis complex. Am J Surg Pathol. 2014;38(7):895–909.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kwiatkowski DJ, Short MP. Tuberous sclerosis. Arch Dermatol. 1994;130(3):348–54.

    Article  CAS  PubMed  Google Scholar 

  102. Nazzaro V, Gelmetti C, Rizzitelli G, Cavalli R, Brusasco A, Ermacora E. Dermatologic manifestations of tuberous sclerosis in children. A study of 6 cases. G Ital Dermatol Venereol. 1989;124(5):215–20.

    CAS  PubMed  Google Scholar 

  103. Webb DW, Clarke A, Fryer A, Osborne JP. The cutaneous features of tuberous sclerosis: a population study. Br J Dermatol. 1996;135(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  104. Jimbow K, Fitzpatrick TB, Szabo G, Hori Y. Congenital circumscribed hypomelanosis: a characterization based on electron microscopic study of tuberous sclerosis, nevus depigmentosus, and piebaldism. J Invest Dermatol. 1975;64(1):50–62.

    Article  CAS  PubMed  Google Scholar 

  105. Bhawan J, Edelstein L. Angiofibromas in tuberous sclerosis: a light and electron microscopic study. J Cutan Pathol. 1977;4(6):300–7.

    Article  CAS  PubMed  Google Scholar 

  106. Fryer AE, Osborne JP, Schutt W. Forehead plaque: a presenting skin sign in tuberous sclerosis. Arch Dis Child. 1987;62(3):292–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Franz DN, Bissler JJ, McCormack FX. Tuberous sclerosis complex: neurological, renal and pulmonary manifestations. Neuropediatrics. 2011;41(5):199–208.

    Article  PubMed Central  CAS  Google Scholar 

  108. Au KS, Williams AT, Roach ES, Batchelor L, Sparagana SP, Delgado MR, Wheless JW, Baumgartner JE, Roa BB, Wilson CM, Smith-Knuppel TK, Cheung MY, Whittemore VH, King TM, Northrup H. Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med. 2007;9(2):88–100.

    Article  CAS  PubMed  Google Scholar 

  109. Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, Choy YS, Reeve MP, Thiele E, Egelhoff JC, Kasprzyk-Obara J, Domanska-Pakiela D, Kwiatkowski DJ. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet. 2001;68(1):64–80.

    Article  CAS  PubMed  Google Scholar 

  110. Gao X, Zhang Y, Arrazola P, Hino O, Kobayashi T, Yeung RS, Ru B, Pan D. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol. 2002;4(9):699–704.

    Article  CAS  PubMed  Google Scholar 

  111. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648–57.

    Article  CAS  PubMed  Google Scholar 

  112. Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A. 2002;99(21):13571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell. 2010;40(2):310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Julich K, Sahin M. Mechanism-based treatment in tuberous sclerosis complex. Pediatr Neurol. 2014;50(4):290–6.

    Article  PubMed  Google Scholar 

  115. Kohrman MH. Emerging treatments in the management of tuberous sclerosis complex. Pediatr Neurol. 2012;46(5):267–75.

    Article  PubMed  Google Scholar 

  116. Rapini RP, Golitz LE. Sclerotic fibromas of the skin. J Am Acad Dermatol. 1989;20(2 Pt 1):266–71.

    Article  CAS  PubMed  Google Scholar 

  117. Kanwar AJ, Kaur S, Thami GP, Mohan H. Congenital infantile digital fibromatosis. Pediatr Dermatol. 2002;19(4):370–1.

    Article  PubMed  Google Scholar 

  118. Santa Cruz DJ, Reiner CB. Recurrent digital fibroma of childhood. J Cutan Pathol. 1978;5(6):339–46.

    Article  CAS  PubMed  Google Scholar 

  119. Albertini JG, Welsch MJ, Conger LA, Libow LF, Elston DM. Infantile digital fibroma treated with mohs micrographic surgery. Dermatol Surg. 2002;28(10):959–61.

    PubMed  Google Scholar 

  120. Frydman AF, Mercer SE, Kleinerman R, Yanofsky VR, Birge MB. Acquired fibrokeratoma presenting as multiple plantar nodules. Dermatol Online J. 2010;16(10):5.

    PubMed  Google Scholar 

  121. Kint A, Baran R, De Keyser H. Acquired (digital) fibrokeratoma. J Am Acad Dermatol. 1985;12(5 Pt 1):816–21.

    Article  CAS  PubMed  Google Scholar 

  122. Baykal C, Buyukbabani N, Yazganoglu KD, Saglik E. Acquired digital fibrokeratoma. Cutis. 2007;79(2):129–32.

    PubMed  Google Scholar 

  123. Carlson RM, Lloyd KM, Campbell TE. Acquired periungual fibrokeratoma: a case report. Cutis. 2007;80(2):137–40.

    PubMed  Google Scholar 

  124. Hemric JR, Allen HB. Acquired digital fibrokeratoma. Cutis. 1979;23(3):304–6.

    CAS  PubMed  Google Scholar 

  125. Akpinar F, Dervis E. Association between acrochordons and the components of metabolic syndrome. Eur J Dermatol. 2012;22(1):106–10.

    CAS  PubMed  Google Scholar 

  126. Cathro HP, Patterson JW, Wick MR. Cutaneous pseudosarcomatous polyp: a recently described lesion. Ann Diagn Pathol. 2008;12(6):440–4.

    Article  PubMed  Google Scholar 

  127. Ubogy-Rainey Z, James WD, Lupton GP, Rodman OG. Fibrofolliculomas, trichodiscomas, and acrochordons: the Birt–Hogg–Dube syndrome. J Am Acad Dermatol. 1987;16(2 Pt 2):452–7.

    Article  CAS  PubMed  Google Scholar 

  128. El Safoury OS, Fawzy MM, Hay RM, Hassan AS, El Maadawi ZM, Rashed LA. The possible role of trauma in skin tags through the release of mast cell mediators. Indian J Dermatol. 2012;56(6):641–6.

    Google Scholar 

  129. Diaz-Cascajo C, Schaefer D, Borghi S. Angiofibroblastoma of the skin: a report of seven cases in support of a distinctive entity. J Cutan Pathol. 2002;29(9):534–9.

    Article  CAS  PubMed  Google Scholar 

  130. Diaz-Cascajo C, Metze D. Angiofibroblastoma of the skin: a histological, immunohistochemical and ultrastructural report of two cases of an undescribed fibrous tumour. Histopathology. 1999;35(2):109–13.

    Article  CAS  PubMed  Google Scholar 

  131. Jones EW, Cerio R, Smith NP. Epithelioid cell histiocytoma: a new entity. Br J Dermatol. 1989;120(2):185–95.

    Article  CAS  PubMed  Google Scholar 

  132. Glusac EJ, McNiff JM. Epithelioid cell histiocytoma: a simulant of vascular and melanocytic neoplasms. Am J Dermatopathol. 1999;21(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  133. Cangelosi JJ, Prieto VG, Baker GF, Moore BA, Diwan AH. Unusual presentation of multiple epithelioid cell histiocytomas. Am J Dermatopathol. 2008;30(4):373–6.

    Article  PubMed  Google Scholar 

  134. Rabkin MS, Vukmer T. Granular cell variant of epithelioid cell histiocytoma. Am J Dermatopathol. 2012;34(7):766–9.

    Article  PubMed  Google Scholar 

  135. High WA, Golitz LE. Epithelioid cell histiocytoma with hemangiopericytoma-like features. Am J Dermatopathol. 2006;28(4):369–71.

    Article  PubMed  Google Scholar 

  136. Manente L, Schmitt I, Onetti AM, Peris K, Caracciolo E, Chimenti S. Cutaneous epithelioid cell histiocytoma: immunohistochemical and ultrastructural findings suggesting endothelial origin. Am J Dermatopathol. 1997;19(5):519–23.

    Article  CAS  PubMed  Google Scholar 

  137. Mehregan AH, Mehregan DR, Broecker A. Epithelioid cell histiocytoma. A clinicopathologic and immunohistochemical study of eight cases. J Am Acad Dermatol. 1992;26(2 Pt 1):243–6.

    Article  CAS  PubMed  Google Scholar 

  138. Silverman JS, Glusac EJ. Epithelioid cell histiocytoma–histogenetic and kinetics analysis of dermal microvascular unit dendritic cell subpopulations. J Cutan Pathol. 2003;30(7):415–22.

    Article  PubMed  Google Scholar 

  139. Wilk M, Zelger B. Dermatofibroma with intracytoplasmic eosinophilic globules–another case with features overlapping between epithelioid cell histiocytoma and dermal nodular fasciitis. J Cutan Pathol. 2011;38(2):254–5.

    Article  PubMed  Google Scholar 

  140. McGowan J t, Smith CD, Maize Jr J, Cook J. Giant fibrous hamartoma of infancy: a report of two cases and review of the literature. J Am Acad Dermatol. 2011;64(3):579–86.

    Article  PubMed  Google Scholar 

  141. Carretto E, Dall’Igna P, Alaggio R, Siracusa F, Granata C, Ferrari A, Cecchetto G. Fibrous hamartoma of infancy: an Italian multi-institutional experience. J Am Acad Dermatol. 2006;54(5):800–3.

    Article  PubMed  Google Scholar 

  142. Scott DM, Pena JR, Omura EF. Fibrous hamartoma of infancy. J Am Acad Dermatol. 1999;41(5 Pt 2):857–9.

    Article  CAS  PubMed  Google Scholar 

  143. Dickey GE, Sotelo-Avila C. Fibrous hamartoma of infancy: current review. Pediatr Dev Pathol. 1999;2(3):236–43.

    Article  CAS  PubMed  Google Scholar 

  144. Paller AS, Gonzalez-Crussi F, Sherman JO. Fibrous hamartoma of infancy. Eight additional cases and a review of the literature. Arch Dermatol. 1989;125(1):88–91.

    Article  CAS  PubMed  Google Scholar 

  145. Popek EJ, Montgomery EA, Fourcroy JL. Fibrous hamartoma of infancy in the genital region: findings in 15 cases. J Urol. 1994;152(3):990–3.

    CAS  PubMed  Google Scholar 

  146. Saab ST, McClain CM, Coffin CM. Fibrous hamartoma of infancy: a clinicopathologic analysis of 60 cases. Am J Surg Pathol. 2014;38(3):394–401.

    Article  PubMed  Google Scholar 

  147. Grynspan D, Meir K, Senger C, Ball NJ. Cutaneous changes in fibrous hamartoma of infancy. J Cutan Pathol. 2007;34(1):39–43.

    Article  CAS  PubMed  Google Scholar 

  148. Gupta R, Singh S. Cytologic diagnosis of fibrous hamartoma of infancy: a case report of a rare soft tissue lesion. Acta Cytol. 2008;52(2):201–3.

    Article  PubMed  Google Scholar 

  149. Mitchell ML, di Sant’Agnese PA, Gerber JE. Fibrous hamartoma of infancy. Hum Pathol. 1982;13(6):586–8.

    Article  CAS  PubMed  Google Scholar 

  150. Lakshminarayanan R, Konia T, Welborn J. Fibrous hamartoma of infancy: a case report with associated cytogenetic findings. Arch Pathol Lab Med. 2005;129(4):520–2.

    PubMed  Google Scholar 

  151. Rougemont AL, Fetni R, Murthy S, Fournet JC. A complex translocation (6;12;8)(q25;q24.3;q13) in a fibrous hamartoma of infancy. Cancer Genet Cytogenet. 2006;171(2):115–8.

    Article  CAS  PubMed  Google Scholar 

  152. Tassano E, Nozza P, Tavella E, Garaventa A, Panarello C, Morerio C. Cytogenetic characterization of a fibrous hamartoma of infancy with complex translocations. Cancer Genet Cytogenet. 2010;201(1):66–9.

    Article  CAS  PubMed  Google Scholar 

  153. Togo T, Araki E, Ota M, Manabe T, Suzuki S, Utani A. Fibrous hamartoma of infancy in a patient with Williams syndrome. Br J Dermatol. 2007;156(5):1052–5.

    Article  CAS  PubMed  Google Scholar 

  154. Kornik RI, Muchard LK, Teng JM. Dermatofibrosarcoma protuberans in children: an update on the diagnosis and treatment. Pediatr Dermatol. 2012;29(6):707–13.

    Article  PubMed  Google Scholar 

  155. Tsai YJ, Lin PY, Chew KY, Chiang YC. Dermatofibrosarcoma protuberans in children and adolescents: clinical presentation, histology, treatment, and review of the literature. J Plast Reconstr Aesthet Surg. 2014;67(9):1222–9.

    Article  PubMed  Google Scholar 

  156. Nair R, Kane SV, Borges A, Advani SH. Giant cell fibroblastoma. J Surg Oncol. 1993;53(2):136–9.

    Article  CAS  PubMed  Google Scholar 

  157. Perry DA, Schultz LR, Dehner LP. Giant cell fibroblastoma with dermatofibrosarcoma protuberans-like transformation. J Cutan Pathol. 1993;20(5):451–4.

    Article  CAS  PubMed  Google Scholar 

  158. Sigel JE, Bergfeld WF, Goldblum JR. A morphologic study of dermatofibrosarcoma protuberans: expansion of a histologic profile. J Cutan Pathol. 2000;27(4):159–63.

    Article  CAS  PubMed  Google Scholar 

  159. Martin L, Combemale P, Dupin M, Chouvet B, Kanitakis J, Bouyssou-Gauthier ML, Dubreuil G, Claudy A, Grimand PS. The atrophic variant of dermatofibrosarcoma protuberans in childhood: a report of six cases. Br J Dermatol. 1998;139(4):719–25.

    CAS  PubMed  Google Scholar 

  160. Sheehan DJ, Madkan V, Strickling WA, Peterson CM. Atrophic dermatofibrosarcoma protuberans: a case report and reappraisal of the literature. Cutis. 2004;74(4):237–42.

    PubMed  Google Scholar 

  161. Reis-Filho JS, Milanezi F, Ferro J, Schmitt FC. Pediatric pigmented dermatofibrosarcoma protuberans (Bednar tumor): case report and review of the literature with emphasis on the differential diagnosis. Pathol Res Pract. 2002;198(9):621–6.

    Article  PubMed  Google Scholar 

  162. Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, Terrier-Lacombe MJ, Mandahl N, Craver RD, Blin N, Sozzi G, Turc-Carel C, O’Brien KP, Kedra D, Fransson I, Guilbaud C, Dumanski JP. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997;15(1):95–8.

    Article  CAS  PubMed  Google Scholar 

  163. Patel KU, Szabo SS, Hernandez VS, Prieto VG, Abruzzo LV, Lazar AJ, Lopez-Terrada D. Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion is identified in virtually all dermatofibrosarcoma protuberans cases when investigated by newly developed multiplex reverse transcription polymerase chain reaction and fluorescence in situ hybridization assays. Hum Pathol. 2008;39(2):184–93.

    Article  CAS  PubMed  Google Scholar 

  164. Noujaim J, Thway K, Fisher C, Jones RL. Dermatofibrosarcoma protuberans: from translocation to targeted therapy. Cancer Biol Med. 2016;12(4):375–84.

    Google Scholar 

  165. Giacchero D, Maire G, Nuin PA, Berthier F, Ebran N, Carlotti A, Celerier P, Coindre JM, Esteve E, Fraitag S, Guillot B, Ranchere-Vince D, Saiag P, Terrier P, Lacour JP, Pedeutour F. No correlation between the molecular subtype of COL1A1-PDGFB fusion gene and the clinico-histopathological features of dermatofibrosarcoma protuberans. J Invest Dermatol. 2009;130(3):904–7.

    Article  PubMed  CAS  Google Scholar 

  166. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999;79(4):1283–316.

    CAS  PubMed  Google Scholar 

  167. Lin N, Urabe K, Moroi Y, Uchi H, Nakahara T, Dainichi T, Kokuba H, Tu Y, Furue M. Overexpression of phosphorylated-STAT3 and phosphorylated-ERK protein in dermatofibrosarcoma protuberans. Eur J Dermatol. 2006;16(3):262–5.

    CAS  PubMed  Google Scholar 

  168. Maekawa T, Jinnin M, Ohtsuki M, Ihn H. The expression levels of thrombospondin-1 in dermatofibroma and dermatofibrosarcoma protuberans. Eur J Dermatol. 2011;21(4):534–8.

    CAS  PubMed  Google Scholar 

  169. Greco A, Fusetti L, Villa R, Sozzi G, Minoletti F, Mauri P, Pierotti MA. Transforming activity of the chimeric sequence formed by the fusion of collagen gene COL1A1 and the platelet derived growth factor b-chain gene in dermatofibrosarcoma protuberans. Oncogene. 1998;17(10):1313–9.

    Article  CAS  PubMed  Google Scholar 

  170. Shimizu A, O’Brien KP, Sjoblom T, Pietras K, Buchdunger E, Collins VP, Heldin CH, Dumanski JP, Ostman A. The dermatofibrosarcoma protuberans-associated collagen type Ialpha1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res. 1999;59(15):3719–23.

    CAS  PubMed  Google Scholar 

  171. Kajihara I, Jinnin M, Harada M, Makino K, Honda N, Makino T, Igata T, Masuguchi S, Fukushima S, Ihn H. miR-205 down-regulation promotes proliferation of dermatofibrosarcoma protuberans tumor cells by regulating LRP-1 and ERK phosphorylation. Arch Dermatol Res. 2014;306(4):367–74.

    Article  CAS  PubMed  Google Scholar 

  172. McArthur GA, Demetri GD, van Oosterom A, Heinrich MC, Debiec-Rychter M, Corless CL, Nikolova Z, Dimitrijevic S, Fletcher JA. Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225. J Clin Oncol. 2005;23(4):866–73.

    Article  CAS  PubMed  Google Scholar 

  173. Rubin BP, Schuetze SM, Eary JF, Norwood TH, Mirza S, Conrad EU, Bruckner JD. Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J Clin Oncol. 2002;20(17):3586–91.

    Article  CAS  PubMed  Google Scholar 

  174. Hong JY, Liu X, Mao M, Li M, Choi DI, Kang SW, Lee J, La Choi Y. Genetic aberrations in imatinib-resistant dermatofibrosarcoma protuberans revealed by whole genome sequencing. PLoS One. 2013;8(7), e69752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bianchini L, Maire G, Guillot B, Joujoux JM, Follana P, Simon MP, Coindre JM, Pedeutour F. Complex t(5;8) involving the CSPG2 and PTK2B genes in a case of dermatofibrosarcoma protuberans without the COL1A1-PDGFB fusion. Virchows Arch. 2008;452(6):689–96.

    Article  CAS  PubMed  Google Scholar 

  176. de Visscher SA, van Ginkel RJ, Wobbes T, Veth RP, Ten Heuvel SE, Suurmeijer AJ, Hoekstra HJ. Epithelioid sarcoma: still an only surgically curable disease. Cancer. 2006;107(3):606–12.

    Article  PubMed  Google Scholar 

  177. Miettinen M, Fanburg-Smith JC, Virolainen M, Shmookler BM, Fetsch JF. Epithelioid sarcoma: an immunohistochemical analysis of 112 classical and variant cases and a discussion of the differential diagnosis. Hum Pathol. 1999;30(8):934–42.

    Article  CAS  PubMed  Google Scholar 

  178. Sakharpe A, Lahat G, Gulamhusein T, Liu P, Bolshakov S, Nguyen T, Zhang P, Belousov R, Young E, Xie X, Rao P, Hornick JL, Lazar AJ, Pollock RE, Lev D. Epithelioid sarcoma and unclassified sarcoma with epithelioid features: clinicopathological variables, molecular markers, and a new experimental model. Oncologist. 2011;16(4):512–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Dei Tos AP, Wagner AJ, Modena P, Comandone A, Leyvraz S. Epithelioid soft tissue tumors. Semin Oncol. 2009;36(4):347–57.

    Article  PubMed  Google Scholar 

  180. Lushnikova T, Knuutila S, Miettinen M. DNA copy number changes in epithelioid sarcoma and its variants: a comparative genomic hybridization study. Mod Pathol. 2000;13(10):1092–6.

    Article  CAS  PubMed  Google Scholar 

  181. Nishio J, Iwasaki H, Nabeshima K, Ishiguro M, Naumann S, Isayama T, Naito M, Kaneko Y, Kikuchi M, Bridge JA. Establishment of a new human epithelioid sarcoma cell line, FU-EPS-1: molecular cytogenetic characterization by use of spectral karyotyping and comparative genomic hybridization. Int J Oncol. 2005;27(2):361–9.

    CAS  PubMed  Google Scholar 

  182. Modena P, Lualdi E, Facchinetti F, Galli L, Teixeira MR, Pilotti S, Sozzi G. SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res. 2005;65(10):4012–9.

    Article  CAS  PubMed  Google Scholar 

  183. Hornick JL, Dal Cin P, Fletcher CD. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol. 2009;33(4):542–50.

    Article  PubMed  Google Scholar 

  184. Brenca M, Rossi S, Lorenzetto E, Piccinin E, Piccinin S, Rossi FM, Giuliano A, Dei Tos AP, Maestro R, Modena P. SMARCB1/INI1 genetic inactivation is responsible for tumorigenic properties of epithelioid sarcoma cell line VAESBJ. Mol Cancer Ther. 2013;12(6):1060–72.

    Article  CAS  PubMed  Google Scholar 

  185. Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, Aurias A, Delattre O. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394(6689):203–6.

    Article  CAS  PubMed  Google Scholar 

  186. Sansam CG, Roberts CW. Epigenetics and cancer: altered chromatin remodeling via Snf5 loss leads to aberrant cell cycle regulation. Cell Cycle. 2006;5(6):621–4.

    Article  CAS  PubMed  Google Scholar 

  187. Wilson BG, Roberts CW. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11(7):481–92.

    Article  CAS  PubMed  Google Scholar 

  188. Li L, Fan XS, Xia QY, Rao Q, Liu B, Yu B, Shi QL, Lu ZF, Zhou XJ. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45(11):2247–54.

    Article  CAS  PubMed  Google Scholar 

  189. Lopez G, Song Y, Lam R, Ruder D, Creighton CJ, Bid HK, Bill KL, Bolshakov S, Zhang X, Lev D, Pollock RE. HDAC inhibition for the treatment of epithelioid sarcoma: novel cross talk between epigenetic components. Mol Cancer Res. 2015;14(1):35–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Pappo AS, Fontanesi J, Luo X, Rao BN, Parham DM, Hurwitz C, Avery L, Pratt CB. Synovial sarcoma in children and adolescents: the St Jude Children’s Research Hospital experience. J Clin Oncol. 1994;12(11):2360–6.

    Article  CAS  PubMed  Google Scholar 

  191. Tarkan Y, Erkan A, Selcuk ES, Mehmet K, Tugba KF, Ozlem US, Suleyman A, Tulay A, Bilge A, Ramazan Y, Yusuf G, Mevlude I, Umut D, Ilhan O, Abdurrahman I, Alper S, Dogan U, Necati A, Berna O, Gok DA, Ugur Y, Mahmut G. Clinical and pathological features of patients with resected synovial sarcoma: a multicenter retrospective analysis of the Anatolian Society of Medical Oncology. J Cancer Res Ther. 2014;10(1):73–8.

    Article  PubMed  Google Scholar 

  192. Flieder DB, Moran CA. Primary cutaneous synovial sarcoma: a case report. Am J Dermatopathol. 1998;20(5):509–12.

    Article  CAS  PubMed  Google Scholar 

  193. Nielsen TO, Poulin NM, Ladanyi M. Synovial sarcoma: recent discoveries as a roadmap to new avenues for therapy. Cancer Discov. 2015;5(2):124–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM, Gusterson BA, Cooper CS. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet. 1994;7(4):502–8.

    Article  CAS  PubMed  Google Scholar 

  195. Ladanyi M, Antonescu CR, Leung DH, Woodruff JM, Kawai A, Healey JH, Brennan MF, Bridge JA, Neff JR, Barr FG, Goldsmith JD, Brooks JS, Goldblum JR, Ali SZ, Shipley J, Cooper CS, Fisher C, Skytting B, Larsson O. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 2002;62(1):135–40.

    CAS  PubMed  Google Scholar 

  196. Skytting B, Nilsson G, Brodin B, Xie Y, Lundeberg J, Uhlen M, Larsson O. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst. 1999;91(11):974–5.

    Article  CAS  PubMed  Google Scholar 

  197. Mueller-Planitz F, Klinker H, Becker PB. Nucleosome sliding mechanisms: new twists in a looped history. Nat Struct Mol Biol. 2013;20(9):1026–32.

    Article  CAS  PubMed  Google Scholar 

  198. Panagopoulos I, Mertens F, Isaksson M, Limon J, Gustafson P, Skytting B, Akerman M, Sciot R, Dal Cin P, Samson I, Iliszko M, Ryoe J, Debiec-Rychter M, Szadowska A, Brosjo O, Larsson O, Rydholm A, Mandahl N. Clinical impact of molecular and cytogenetic findings in synovial sarcoma. Genes Chromosomes Cancer. 2001;31(4):362–72.

    Article  CAS  PubMed  Google Scholar 

  199. Haldar M, Hancock JD, Coffin CM, Lessnick SL, Capecchi MR. A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell. 2007;11(4):375–88.

    Article  CAS  PubMed  Google Scholar 

  200. Horvai AE, Kramer MJ, O’Donnell R. Beta-catenin nuclear expression correlates with cyclin D1 expression in primary and metastatic synovial sarcoma: a tissue microarray study. Arch Pathol Lab Med. 2006;130(6):792–8.

    CAS  PubMed  Google Scholar 

  201. Ng TL, Gown AM, Barry TS, Cheang MC, Chan AK, Turbin DA, Hsu FD, West RB, Nielsen TO. Nuclear beta-catenin in mesenchymal tumors. Mod Pathol. 2005;18(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  202. Saito T, Oda Y, Sakamoto A, Tamiya S, Kinukawa N, Hayashi K, Iwamoto Y, Tsuneyoshi M. Prognostic value of the preserved expression of the E-cadherin and catenin families of adhesion molecules and of beta-catenin mutations in synovial sarcoma. J Pathol. 2000;192(3):342–50.

    Article  CAS  PubMed  Google Scholar 

  203. Barham W, Frump AL, Sherrill TP, Garcia CB, Saito-Diaz K, VanSaun MN, Fingleton B, Gleaves L, Orton D, Capecchi MR, Blackwell TS, Lee E, Yull F, Eid JE. Targeting the Wnt pathway in synovial sarcoma models. Cancer Discov. 2013;3(11):1286–301.

    Article  CAS  PubMed  Google Scholar 

  204. Friedrichs N, Trautmann M, Endl E, Sievers E, Kindler D, Wurst P, Czerwitzki J, Steiner S, Renner M, Penzel R, Koch A, Larsson O, Tanaka S, Kawai A, Schirmacher P, Mechtersheimer G, Wardelmann E, Buettner R, Hartmann W. Phosphatidylinositol-3’-kinase/AKT signaling is essential in synovial sarcoma. Int J Cancer. 2010;129(7):1564–75.

    Article  CAS  Google Scholar 

  205. Setsu N, Kohashi K, Fushimi F, Endo M, Yamamoto H, Takahashi Y, Yamada Y, Ishii T, Yokoyama K, Iwamoto Y, Oda Y. Prognostic impact of the activation status of the Akt/mTOR pathway in synovial sarcoma. Cancer. 2013;119(19):3504–13.

    Article  CAS  PubMed  Google Scholar 

  206. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Minami Y, Kohsaka S, Tsuda M, Yachi K, Hatori N, Tanino M, Kimura T, Nishihara H, Minami A, Iwasaki N, Tanaka S. SS18-SSX-regulated miR-17 promotes tumor growth of synovial sarcoma by inhibiting p21WAF1/CIP1. Cancer Sci. 2014;105(9):1152–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kerouanton A, Jimenez I, Cellier C, Laurence V, Helfre S, Pannier S, Mary P, Freneaux P, Orbach D. Synovial sarcoma in children and adolescents. J Pediatr Hematol Oncol. 2014;36(4):257–62.

    Article  CAS  PubMed  Google Scholar 

  209. Lagarde P, Przybyl J, Brulard C, Perot G, Pierron G, Delattre O, Sciot R, Wozniak A, Schoffski P, Terrier P, Neuville A, Coindre JM, Italiano A, Orbach D, Debiec-Rychter M, Chibon F. Chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas. J Clin Oncol. 2013;31(5):608–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Phung, T.L., Wright, T.S., Pourciau, C.Y., Smoller, B.R. (2017). Fibrous Proliferations. In: Pediatric Dermatopathology. Springer, Cham. https://doi.org/10.1007/978-3-319-44824-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44824-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44822-0

  • Online ISBN: 978-3-319-44824-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics