Skip to main content

Disorders of Pigmentation

  • Chapter
  • First Online:
Book cover Pediatric Dermatopathology

Abstract

Human variability is most strikingly defined by variations in skin and hair color. Skin pigmentation is primarily a result of melanocyte functioning. However, surrounding keratinocytes, extracellular matrix proteins and dermal fibroblasts also play a role in cutaneous homeostasis and the phenotypic demonstration of color.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silverberg NB. Pediatric vitiligo. Pediatr Clin North Am. 2014;61(2):347–66.

    Article  PubMed  Google Scholar 

  2. Alikhan A, Felsten LM, Daly M, Petronic-Rosic V. Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J Am Acad Dermatol. 2011;65(3):473–91.

    Article  PubMed  Google Scholar 

  3. Kovacs SO. Vitiligo. J Am Acad Dermatol. 1998;38(5 Pt 1):647–66; quiz 667–668.

    Article  CAS  PubMed  Google Scholar 

  4. Gan EY, Cario-Andre M, Pain C, Goussot JF, Taieb A, Seneschal J, Ezzedine K. Follicular vitiligo: a report of 8 cases. J Am Acad Dermatol. 2016;74:1178–84.

    Article  PubMed  Google Scholar 

  5. Spritz RA. Modern vitiligo genetics sheds new light on an ancient disease. J Dermatol. 2013;40(5):310–8.

    Article  CAS  PubMed  Google Scholar 

  6. Erener S, Petrilli V, Kassner I, Minotti R, Castillo R, Santoro R, Hassa PO, Tschopp J, Hottiger MO. Inflammasome-activated caspase 7 cleaves PARP1 to enhance the expression of a subset of NF-kappaB target genes. Mol Cell. 2012;46(2):200–11.

    Article  CAS  PubMed  Google Scholar 

  7. Richmond JM, Frisoli ML, Harris JE. Innate immune mechanisms in vitiligo: danger from within. Curr Opin Immunol. 2013;25(6):676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roychoudhuri R, Hirahara K, Mousavi K, Clever D, Klebanoff CA, Bonelli M, Sciume G, Zare H, Vahedi G, Dema B, Yu Z, Liu H, Takahashi H, Rao M, Muranski P, Crompton JG, Punkosdy G, Bedognetti D, Wang E, Hoffmann V, Rivera J, Marincola FM, Nakamura A, Sartorelli V, Kanno Y, Gattinoni L, Muto A, Igarashi K, O’Shea JJ, Restifo NP. BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis. Nature. 2013;498(7455):506–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van den Wijngaard R, Wankowicz-Kalinska A, Le Poole C, Tigges B, Westerhof W, Das P. Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes is associated with the prominent presence of CLA+ T cells at the perilesional site. Lab Invest. 2000;80(8):1299–309.

    Article  PubMed  Google Scholar 

  10. Ogg GS, Rod Dunbar P, Romero P, Chen JL, Cerundolo V. High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med. 1998;188(6):1203–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wankowicz-Kalinska A, van den Wijngaard RM, Tigges BJ, Westerhof W, Ogg GS, Cerundolo V, Storkus WJ, Das PK. Immunopolarization of CD4+ and CD8+ T cells to Type-1-like is associated with melanocyte loss in human vitiligo. Lab Invest. 2003;83(5):683–95.

    Article  CAS  PubMed  Google Scholar 

  12. van den Boorn JG, Konijnenberg D, Dellemijn TA, van der Veen JP, Bos JD, Melief CJ, Vyth-Dreese FA, Luiten RM. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol. 2009;129(9):2220–32.

    Article  PubMed  CAS  Google Scholar 

  13. Kemp EH, Waterman EA, Gawkrodger DJ, Watson PF, Weetman AP. Autoantibodies to tyrosinase-related protein-1 detected in the sera of vitiligo patients using a quantitative radiobinding assay. Br J Dermatol. 1998;139(5):798–805.

    Article  CAS  PubMed  Google Scholar 

  14. Okamoto T, Irie RF, Fujii S, Huang SK, Nizze AJ, Morton DL, Hoon DS. Anti-tyrosinase-related protein-2 immune response in vitiligo patients and melanoma patients receiving active-specific immunotherapy. J Invest Dermatol. 1998;111(6):1034–9.

    Article  CAS  PubMed  Google Scholar 

  15. Palermo B, Campanelli R, Garbelli S, Mantovani S, Lantelme E, Brazzelli V, Ardigo M, Borroni G, Martinetti M, Badulli C, Necker A, Giachino C. Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo. J Invest Dermatol. 2001;117(2):326–32.

    Article  CAS  PubMed  Google Scholar 

  16. Jimbow K, Chen H, Park JS, Thomas PD. Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Br J Dermatol. 2001;144(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  17. Maresca V, Roccella M, Roccella F, Camera E, Del Porto G, Passi S, Grammatico P, Picardo M. Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol. 1997;109(3):310–3.

    Article  CAS  PubMed  Google Scholar 

  18. Koca R, Armutcu F, Altinyazar HC, Gurel A. Oxidant-antioxidant enzymes and lipid peroxidation in generalized vitiligo. Clin Exp Dermatol. 2004;29(4):406–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh S, Mukhopadhyay S. Chemical leucoderma: a clinico-aetiological study of 864 cases in the perspective of a developing country. Br J Dermatol. 2009;160(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  20. Mosher DB, Parrish JA, Fitzpatrick TB. Monobenzylether of hydroquinone. A retrospective study of treatment of 18 vitiligo patients and a review of the literature. Br J Dermatol. 1977;97(6):669–79.

    Article  CAS  PubMed  Google Scholar 

  21. Yu R, Broady R, Huang Y, Wang Y, Yu J, Gao M, Levings M, Wei S, Zhang S, Xu A, Su M, Dutz J, Zhang X, Zhou Y. Transcriptome analysis reveals markers of aberrantly activated innate immunity in vitiligo lesional and non-lesional skin. PLoS One. 2012;7(12), e51040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thomas I, Kihiczak GG, Fox MD, Janniger CK, Schwartz RA. Piebaldism: an update. Int J Dermatol. 2004;43(10):716–9.

    Article  PubMed  Google Scholar 

  23. Lopez V, Jorda E. Piebaldism in a 2-year-old girl. Dermatol Online J. 2011;17(2):13.

    Google Scholar 

  24. Jimbow K, Fitzpatrick TB, Szabo G, Hori Y. Congenital circumscribed hypomelanosis: a characterization based on electron microscopic study of tuberous sclerosis, nevus depigmentosus, and piebaldism. J Invest Dermatol. 1975;64(1):50–62.

    Article  CAS  PubMed  Google Scholar 

  25. Nagao S, Iijima S, Shima T. Mast cells in the epidermis of piebaldism. Arch Dermatol Forsch. 1975;251(3):221–5.

    Article  CAS  PubMed  Google Scholar 

  26. Dessinioti C, Stratigos AJ, Rigopoulos D, Katsambas AD. A review of genetic disorders of hypopigmentation: lessons learned from the biology of melanocytes. Exp Dermatol. 2009;18(9):741–9.

    Article  CAS  PubMed  Google Scholar 

  27. Fleischman RA, Gallardo T, Mi X. Mutations in the ligand-binding domain of the kit receptor: an uncommon site in human piebaldism. J Invest Dermatol. 1996;107(5):703–6.

    Article  CAS  PubMed  Google Scholar 

  28. Sanchez-Martin M, Perez-Losada J, Rodriguez-Garcia A, Gonzalez-Sanchez B, Korf BR, Kuster W, Moss C, Spritz RA, Sanchez-Garcia I. Deletion of the SLUG (SNAI2) gene results in human piebaldism. Am J Med Genet A. 2003;122A(2):125–32.

    Article  PubMed  Google Scholar 

  29. Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia A, Sanchez ML, Orfao A, Flores T, Sanchez-Garcia I. Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood. 2002;100(4):1274–86.

    CAS  PubMed  Google Scholar 

  30. Kim SK, Kim EH, Kang HY, Lee E-S, Sohn S, Kim YC. Comprehensive understanding of idiopathic guttate hypomelanosis: clinical and histopathological correlation. Int J Dermatol. 2010;49(2):162–6.

    Article  PubMed  Google Scholar 

  31. Cummings KI, Cottel WI. Idiopathic guttate hypomelanosis. Arch Dermatol. 1966;93(2):184–6.

    Article  CAS  PubMed  Google Scholar 

  32. Falabella R, Escobar C, Giraldo N, Rovetto P, Gil J, Barona MI, Acosta F, Alzate A. On the pathogenesis of idiopathic guttate hypomelanosis. J Am Acad Dermatol. 1987;16(1 Pt 1):35–44.

    Article  CAS  PubMed  Google Scholar 

  33. Arrunategui A, Trujillo RA, Marulanda MP, Sandoval F, Wagner A, Alzate A, Falabella R. HLA-DQ3 is associated with idiopathic guttate hypomelanosis, whereas HLA-DR8 is not, in a group of renal transplant patients. Int J Dermatol. 2002;41(11):744–7.

    Article  PubMed  Google Scholar 

  34. Maia M, Volpini BM, Santos GA, Rujula MJ. Quality of life in patients with oculocutaneous albinism. An Bras Dermatol. 2015;90(4):513–7.

    Article  PubMed  PubMed Central  Google Scholar 

  35. King RA, Townsend D, Oetting W, Summers CG, Olds DP, White JG, Spritz RA. Temperature-sensitive tyrosinase associated with peripheral pigmentation in oculocutaneous albinism. J Clin Invest. 1991;87(3):1046–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kugelman TP, Van Scott EJ. Tyrosinase activity in melanocytes of human Albinos1. J Invest Dermatol. 1961;37(1):73–6.

    Article  CAS  PubMed  Google Scholar 

  37. Simeonov DR, Wang X, Wang C, Sergeev Y, Dolinska M, Bower M, Fischer R, Winer D, Dubrovsky G, Balog JZ, Huizing M, Hart R, Zein WM, Gahl WA, Brooks BP, Adams DR. DNA variations in oculocutaneous albinism: an updated mutation list and current outstanding issues in molecular diagnostics. Hum Mutat. 2013;34(6):827–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. King RA, Pietsch J, Fryer JP, Savage S, Brott MJ, Russell-Eggitt I, Summers CG, Oetting WS. Tyrosinase gene mutations in oculocutaneous albinism 1 (OCA1): definition of the phenotype. Hum Genet. 2003;113(6):502–13.

    Article  CAS  PubMed  Google Scholar 

  39. Oetting WS, Pietsch J, Brott MJ, Savage S, Fryer JP, Summers CG, King RA. The R402Q tyrosinase variant does not cause autosomal recessive ocular albinism. Am J Med Genet A. 2009;149A(3):466–9.

    Article  CAS  PubMed  Google Scholar 

  40. Tomita Y, Suzuki T. Genetics of pigmentary disorders. Am J Med Genet C Semin Med Genet. 2004;131C(1):75–81.

    Article  PubMed  Google Scholar 

  41. Toyofuku K, Valencia JC, Kushimoto T, Costin GE, Virador VM, Vieira WD, Ferrans VJ, Hearing VJ. The etiology of oculocutaneous albinism (OCA) type II: the pink protein modulates the processing and transport of tyrosinase. Pigment Cell Res. 2002;15(3):217–24.

    Article  CAS  PubMed  Google Scholar 

  42. Sarangarajan R, Boissy RE. Tyrp1 and oculocutaneous albinism type 3. Pigment Cell Res. 2001;14(6):437–44.

    Article  CAS  PubMed  Google Scholar 

  43. Kobayashi T, Hearing VJ. Direct interaction of tyrosinase with Tyrp1 to form heterodimeric complexes in vivo. J Cell Sci. 2007;120(Pt 24):4261–8.

    Article  CAS  PubMed  Google Scholar 

  44. Costin GE, Valencia JC, Vieira WD, Lamoreux ML, Hearing VJ. Tyrosinase processing and intracellular trafficking is disrupted in mouse primary melanocytes carrying the underwhite (uw) mutation. A model for oculocutaneous albinism (OCA) type 4. J Cell Sci. 2003;116(Pt 15):3203–12.

    Article  CAS  PubMed  Google Scholar 

  45. Cullinane AR, Vilboux T, O’Brien K, Curry JA, Maynard DM, Carlson-Donohoe H, Ciccone C, Markello TC, Gunay-Aygun M, Huizing M, Gahl WA. Homozygosity mapping and whole-exome sequencing to detect SLC45A2 and G6PC3 mutations in a single patient with oculocutaneous albinism and neutropenia. J Invest Dermatol. 2011;131(10):2017–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Giebel LB, Tripathi RK, King RA, Spritz RA. A tyrosinase gene missense mutation in temperature-sensitive type I oculocutaneous albinism. A human homologue to the Siamese cat and the Himalayan mouse. J Clin Invest. 1991;87(3):1119–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Scheinfeld NS. Syndromic albinism: a review of genetics and phenotypes. Dermatol Online J. 2003;9(5):5.

    PubMed  Google Scholar 

  48. Al-Herz W, Nanda A. Skin manifestations in primary immunodeficient children. Pediatr Dermatol. 2011;28(5):494–501.

    Article  PubMed  Google Scholar 

  49. Roy A, Kar R, Basu D, Srivani S, Badhe BA. Clinico-hematological profile of Chediak-Higashi syndrome: experience from a tertiary care center in south India. Indian J Pathol Microbiol. 2011;54(3):547–51.

    Article  PubMed  Google Scholar 

  50. Carrillo-Farga J, Gutiérrez-Palomera G, Ruiz-Maldonado R, Rondán A, Antuna S. Giant cytoplasmic granules in Langerhans cells of Chediak-Higashi syndrome. Am J Dermatopathol. 1990;12(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  51. Karim MA, Nagle DL, Kandil HH, Burger J, Moore KJ, Spritz RA. Mutations in the Chediak-Higashi syndrome gene (CHS1) indicate requirement for the complete 3801 amino acid CHS protein. Hum Mol Genet. 1997;6(7):1087–9.

    Article  CAS  PubMed  Google Scholar 

  52. Nagle DL, Karim MA, Woolf EA, Holmgren L, Bork P, Misumi DJ, McGrail SH, Dussault Jr BJ, Perou CM, Boissy RE, Duyk GM, Spritz RA, Moore KJ. Identification and mutation analysis of the complete gene for Chediak-Higashi syndrome. Nat Genet. 1996;14(3):307–11.

    Article  CAS  PubMed  Google Scholar 

  53. Huizing M, Anikster Y, Gahl WA. Hermansky-Pudlak syndrome and Chediak-Higashi syndrome: disorders of vesicle formation and trafficking. Thromb Haemost. 2001;86(1):233–45.

    CAS  PubMed  Google Scholar 

  54. Perou CM, Leslie JD, Green W, Li L, Ward DM, Kaplan J. The Beige/Chediak-Higashi syndrome gene encodes a widely expressed cytosolic protein. J Biol Chem. 1997;272(47):29790–4.

    Article  CAS  PubMed  Google Scholar 

  55. Marques GF, Tonello CS, Sousa JM. Incontinentia pigmenti or Bloch-Sulzberger syndrome: a rare X-linked genodermatosis. An Bras Dermatol. 2014;89(3):486–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hadj-Rabia S, Froidevaux D, Bodak N, Hamel-Teillac D, Smahi A, Touil Y, Fraitag S, de Prost Y, Bodemer C. Clinical study of 40 cases of incontinentia pigmenti. Arch Dermatol. 2003;139(9):1163–70.

    Article  PubMed  Google Scholar 

  57. Thyresson NH, Goldberg NC, Tye MJ, Leiferman KM. Localization of eosinophil granule major basic protein in incontinentia pigmenti. Pediatr Dermatol. 1991;8(2):102–6.

    Article  CAS  PubMed  Google Scholar 

  58. Scardamaglia L, Howard A, Sinclair R. Twenty-nail dystrophy in a girl with incontinentia pigmenti. Australas J Dermatol. 2003;44(1):71–3.

    Article  PubMed  Google Scholar 

  59. Aradhya S, Courtois G, Rajkovic A, Lewis RA, Levy M, Israel A, Nelson DL. Atypical forms of incontinentia pigmenti in male individuals result from mutations of a cytosine tract in exon 10 of NEMO (IKK-gamma). Am J Hum Genet. 2001;68(3):765–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zonana J, Elder ME, Schneider LC, Orlow SJ, Moss C, Golabi M, Shapira SK, Farndon PA, Wara DW, Emmal SA, Ferguson BM. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet. 2000;67(6):1555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smahi A, Courtois G, Vabres P, Yamaoka S, Heuertz S, Munnich A, Israel A, Heiss NS, Klauck SM, Kioschis P, Wiemann S, Poustka A, Esposito T, Bardaro T, Gianfrancesco F, Ciccodicola A, D’Urso M, Woffendin H, Jakins T, Donnai D, Stewart H, Kenwrick SJ, Aradhya S, Yamagata T, Levy M, Lewis RA, Nelson DL. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature. 2000;405(6785):466–72.

    Article  CAS  PubMed  Google Scholar 

  62. Rothwarf DM, Zandi E, Natoli G, Karin M. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature. 1998;395(6699):297–300.

    Article  CAS  PubMed  Google Scholar 

  63. Rudolph D, Yeh WC, Wakeham A, Rudolph B, Nallainathan D, Potter J, Elia AJ, Mak TW. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev. 2000;14(7):854–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Makris C, Godfrey VL, Krahn-Senftleben G, Takahashi T, Roberts JL, Schwarz T, Feng L, Johnson RS, Karin M. Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol Cell. 2000;5(6):969–79.

    Article  CAS  PubMed  Google Scholar 

  65. Schmidt-Supprian M, Bloch W, Courtois G, Addicks K, Israel A, Rajewsky K, Pasparakis M. NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol Cell. 2000;5(6):981–92.

    Article  CAS  PubMed  Google Scholar 

  66. Nenci A, Huth M, Funteh A, Schmidt-Supprian M, Bloch W, Metzger D, Chambon P, Rajewsky K, Krieg T, Haase I, Pasparakis M. Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum Mol Genet. 2006;15(4):531–42.

    Article  CAS  PubMed  Google Scholar 

  67. Takematsu H, Terui T, Torinuki W, Tagami H. Incontinentia pigmenti: eosinophil chemotactic activity of the crusted scales in the vesiculobullous stage. Br J Dermatol. 1986;115(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  68. Tsuda S, Higuchi M, Ichiki M, Sasai Y. Demonstration of eosinophil chemotactic factor in the blister fluid of patient with incontinentia pigmenti. J Dermatol. 1985;12(4):363–8.

    Article  CAS  PubMed  Google Scholar 

  69. Berlin AL, Paller AS, Chan LS. Incontinentia pigmenti: a review and update on the molecular basis of pathophysiology. J Am Acad Dermatol. 2002;47(2):169–87; quiz 188–190.

    Article  PubMed  Google Scholar 

  70. Grossberg AL. Update on pediatric photosensitivity disorders. Curr Opin Pediatr. 2013;25(4):474–9.

    Article  PubMed  Google Scholar 

  71. Viana Fde O, Cavaleiro LH, Carneiro CM, Bittencourt Mde J, Barros RS, Fonseca DM. Do you know this syndrome? Xeroderma pigmentosum (XP). An Bras Dermatol. 2011;86(5):1029.

    Article  PubMed  Google Scholar 

  72. Ali JT, Mukasa Y, Coulson IH. Xeroderma pigmentosum: early diagnostic features and an adverse consequence of photoprotection. Clin Exp Dermatol. 2009;34(3):442–3.

    Article  CAS  PubMed  Google Scholar 

  73. Karalis A, Tischkowitz M, Millington GW. Dermatological manifestations of inherited cancer syndromes in children. Br J Dermatol. 2011;164(2):245–56.

    Article  CAS  PubMed  Google Scholar 

  74. Kraemer KH, Slor H. Xeroderma pigmentosum. Clin Dermatol. 1985;3(1):33–69.

    Article  CAS  PubMed  Google Scholar 

  75. Kato T, Akiba H, Seiji M, Tohda H, Oikawa A. Clinical and biological studies of 26 cases of xeroderma pigmentosum in northeast district of Japan. Arch Dermatol Res. 1985;277(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  76. LeSueur BW, Silvis NG, Hansen RC. Basal cell carcinoma in children: report of 3 cases. Arch Dermatol. 2000;136(3):370–2.

    Article  CAS  PubMed  Google Scholar 

  77. Youssef N, Vabres P, Buisson T, Brousse N, Fraitag S. Two unusual tumors in a patient with xeroderma pigmentosum: atypical fibroxanthoma and basosquamous carcinoma. J Cutan Pathol. 1999;26(9):430–5.

    Article  CAS  PubMed  Google Scholar 

  78. Khatri ML, Shafi M, Mashina A. Xeroderma pigmentosum. A clinical study of 24 Libyan cases. J Am Acad Dermatol. 1992;26(1):75–8.

    Article  CAS  PubMed  Google Scholar 

  79. Fazaa B, Zghal M, Bailly C, Zeglaoui F, Goucha S, Mokhtar I, Kharfi M, Ezzine N, Kamoun MR. Melanoma in xeroderma pigmentosum: 12 cases. Ann Dermatol Venereol. 2001;128(4):503–6.

    CAS  PubMed  Google Scholar 

  80. Patterson JW, Jordan Jr WP. Atypical fibroxanthoma in a patient with xeroderma pigmentosum. Arch Dermatol. 1987;123(8):1066–70.

    Article  CAS  PubMed  Google Scholar 

  81. Kars SA, Koc Y, Ruacan S, Baltali E, Tekuzman G, Firat D. Epidermal appendage tumors in xeroderma pigmentosum. Arch Dermatol. 1987;123(6):713–4.

    Article  CAS  PubMed  Google Scholar 

  82. Poiares Baptista A, Tellechea O, Reis JP, Cunha MF, Figueiredo P. Eccrine porocarcinoma. A review of 24 cases. Ann Dermatol Venereol. 1993;120(1):107–15.

    CAS  PubMed  Google Scholar 

  83. Cleaver JE. Defective repair replication of DNA in xeroderma pigmentosum. Nature. 1968;218(5142):652–6.

    Article  CAS  PubMed  Google Scholar 

  84. Epstein JH, Fukuyama K, Reed WB, Epstein WL. Defect in DNA synthesis in skin of patients with xeroderma pigmentosum demonstrated in vivo. Science. 1970;168(3938):1477–8.

    Article  CAS  PubMed  Google Scholar 

  85. Cleaver JE, Lam ET, Revet I. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet. 2009;10(11):756–68.

    Article  CAS  PubMed  Google Scholar 

  86. Sarasin A, Monier R. DNA repair pathways and associated human diseases. Biochimie. 2003;85(11):1041.

    Article  CAS  PubMed  Google Scholar 

  87. Black JO. Xeroderma pigmentosum. Head Neck Pathol. 2016;10(2):139–44.

    Article  PubMed  PubMed Central  Google Scholar 

  88. DiGiovanna JJ, Kraemer KH. Shining a light on xeroderma pigmentosum. J Invest Dermatol. 2012;132(3 Pt 2):785–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bogliolo M, Schuster B, Stoepker C, Derkunt B, Su Y, Raams A, Trujillo JP, Minguillon J, Ramirez MJ, Pujol R, Casado JA, Banos R, Rio P, Knies K, Zuniga S, Benitez J, Bueren JA, Jaspers NG, Scharer OD, de Winter JP, Schindler D, Surralles J. Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am J Hum Genet. 2013;92(5):800–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kashiyama K, Nakazawa Y, Pilz DT, Guo C, Shimada M, Sasaki K, Fawcett H, Wing JF, Lewin SO, Carr L, Li TS, Yoshiura K, Utani A, Hirano A, Yamashita S, Greenblatt D, Nardo T, Stefanini M, McGibbon D, Sarkany R, Fassihi H, Takahashi Y, Nagayama Y, Mitsutake N, Lehmann AR, Ogi T. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am J Hum Genet. 2013;92(5):807–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kannouche P, Stary A. Xeroderma pigmentosum variant and error-prone DNA polymerases. Biochimie. 2003;85(11):1123–32.

    Article  CAS  PubMed  Google Scholar 

  92. Yuasa M, Masutani C, Eki T, Hanaoka F. Genomic structure, chromosomal localization and identification of mutations in the xeroderma pigmentosum variant (XPV) gene. Oncogene. 2000;19(41):4721–8.

    Article  CAS  PubMed  Google Scholar 

  93. Wang LL, Levy ML, Lewis RA, Chintagumpala MM, Lev D, Rogers M, Plon SE. Clinical manifestations in a cohort of 41 Rothmund-Thomson syndrome patients. Am J Med Genet. 2001;102(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  94. Silverberg NB, Biro DE, Laude TA. What syndrome is this? Rothmund-Thomson syndrome (poikiloderma congenitale). Pediatr Dermatol. 1999;16(1):59–61.

    Article  CAS  PubMed  Google Scholar 

  95. Vennos EM, Collins M, James WD. Rothmund-Thomson syndrome: review of the world literature. J Am Acad Dermatol. 1992;27(5 Pt 1):750–62.

    Article  CAS  PubMed  Google Scholar 

  96. Kitao S, Shimamoto A, Goto M, Miller RW, Smithson WA, Lindor NM, Furuichi Y. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat Genet. 1999;22(1):82–4.

    Article  CAS  PubMed  Google Scholar 

  97. Wang LL, Gannavarapu A, Kozinetz CA, Levy ML, Lewis RA, Chintagumpala MM, Ruiz-Maldanado R, Contreras-Ruiz J, Cunniff C, Erickson RP, Lev D, Rogers M, Zackai EH, Plon SE. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst. 2003;95(9):669–74.

    Article  CAS  PubMed  Google Scholar 

  98. Larizza L, Magnani I, Roversi G. Rothmund-Thomson syndrome and RECQL4 defect: splitting and lumping. Cancer Lett. 2006;232(1):107–20.

    Article  CAS  PubMed  Google Scholar 

  99. Croteau DL, Singh DK, Hoh Ferrarelli L, Lu H, Bohr VA. RECQL4 in genomic instability and aging. Trends Genet. 2012;28(12):624–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kellermayer R. The versatile RECQL4. Genet Med. 2006;8(4):213–6.

    Article  CAS  PubMed  Google Scholar 

  101. Hoki Y, Araki R, Fujimori A, Ohhata T, Koseki H, Fukumura R, Nakamura M, Takahashi H, Noda Y, Kito S, Abe M. Growth retardation and skin abnormalities of the Recql4-deficient mouse. Hum Mol Genet. 2003;12(18):2293–9.

    Article  CAS  PubMed  Google Scholar 

  102. Shah H, Sheth FJ, Pandit VS, Langanecha B. Bloom syndrome: report of two cases in siblings. Int J Dermatol. 2013;52(8):990–2.

    Article  PubMed  Google Scholar 

  103. Inamadar AC, Palit A. Bloom syndrome in an Indian child. Pediatr Dermatol. 2005;22(2):147–50.

    Article  PubMed  Google Scholar 

  104. Sahn EE, Hussey 3rd RH, Christmann LM. A case of Bloom syndrome with conjunctival telangiectasia. Pediatr Dermatol. 1997;14(2):120–4.

    Article  CAS  PubMed  Google Scholar 

  105. Grob M, Wyss M, Spycher MA, Dommann S, Schinzel A, Burg G, Trueb RM. Histopathologic and ultrastructural study of lupus-like skin lesions in a patient with Bloom syndrome. J Cutan Pathol. 1998;25(5):275–8.

    Article  CAS  PubMed  Google Scholar 

  106. Sires UI, Mallory SB, Hess JL, Keating JP, Bloomberg G, Dehner LP. Cutaneous presentation of juvenile chronic myelogenous leukemia: a diagnostic and therapeutic dilemma. Pediatr Dermatol. 1995;12(4):364–8.

    Article  CAS  PubMed  Google Scholar 

  107. Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S, Proytcheva M, German J. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell. 1995;83(4):655–66.

    Article  CAS  PubMed  Google Scholar 

  108. Karow JK, Wu L, Hickson ID. RecQ family helicases: roles in cancer and aging. Curr Opin Genet Dev. 2000;10(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  109. Langland G, Elliott J, Li Y, Creaney J, Dixon K, Groden J. The BLM helicase is necessary for normal DNA double-strand break repair. Cancer Res. 2002;62(10):2766–70.

    CAS  PubMed  Google Scholar 

  110. Arora H, Chacon AH, Choudhary S, McLeod MP, Meshkov L, Nouri K, Izakovic J. Bloom syndrome. Int J Dermatol. 2014;53(7):798–802.

    Article  CAS  PubMed  Google Scholar 

  111. Cleary SP, Zhang W, Di Nicola N, Aronson M, Aube J, Steinman A, Haddad R, Redston M, Gallinger S, Narod SA, Gryfe R. Heterozygosity for the BLM(Ash) mutation and cancer risk. Cancer Res. 2003;63(8):1769–71.

    CAS  PubMed  Google Scholar 

  112. Wechsler T, Newman S, West SC. Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature. 2011;471(7340):642–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Amor-Gueret M. Bloom syndrome, genomic instability and cancer: the SOS-like hypothesis. Cancer Lett. 2006;236(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  114. Vijayalaxmi, Evans HJ, Ray JH, German J. Bloom’s syndrome: evidence for an increased mutation frequency in vivo. Science. 1983;221(4613):851–3.

    Article  CAS  PubMed  Google Scholar 

  115. Warren ST, Schultz RA, Chang CC, Wade MH, Trosko JE. Elevated spontaneous mutation rate in Bloom syndrome fibroblasts. Proc Natl Acad Sci U S A. 1981;78(5):3133–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xu AE, Huang B, Li YW, Wang P, Shen H. Clinical, histopathological and ultrastructural characteristics of naevus depigmentosus. Clin Exp Dermatol. 2008;33(4):400–5.

    Article  PubMed  Google Scholar 

  117. Kim SK, Kang HY, Lee E-S, Kim YC. Clinical and histopathologic characteristics of nevus depigmentosus. J Am Acad Dermatol. 2006;55(3):423–8.

    Article  PubMed  Google Scholar 

  118. Lee HS, Chun YS, Hann SK. Nevus depigmentosus: clinical features and histopathologic characteristics in 67 patients. J Am Acad Dermatol. 1999;40(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  119. Jung Kim S, English 3rd JC. Minocycline-induced hyperpigmentation. J Pediatr Adolesc Gynecol. 2012;25(1):77–8.

    Article  PubMed  Google Scholar 

  120. Dereure O. Drug-induced skin pigmentation. Epidemiology, diagnosis and treatment. Am J Clin Dermatol. 2001;2(4):253–62.

    Article  CAS  PubMed  Google Scholar 

  121. Hendrix JD, Greer KE. Cutaneous hyperpigmentation caused by systemic drugs. Int J Dermatol. 1992;31(7):458–66.

    Article  PubMed  Google Scholar 

  122. Delage C, Lagace R, Huard J. Pseudocyanotic pigmentation of the skin induced by amiodarone: a light and electron microscopic study. Can Med Assoc J. 1975;112(10):1205–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Fitzpatrick JE. New histopathologic findings in drug eruptions. Dermatol Clin. 1992;10(1):19–36.

    CAS  PubMed  Google Scholar 

  124. Argenyi ZB, Finelli L, Bergfeld WF, Tuthill RJ, McMahon JT, Ratz JL, Petroff N. Minocycline-related cutaneous hyperpigmentation as demonstrated by light microscopy, electron microscopy and X-ray energy spectroscopy. J Cutan Pathol. 1987;14(3):176–80.

    Article  CAS  PubMed  Google Scholar 

  125. Bowen AR, McCalmont TH. The histopathology of subcutaneous minocycline pigmentation. J Am Acad Dermatol. 2007;57(5):836–9.

    Article  PubMed  Google Scholar 

  126. Greiner AC, Nicolson GA. Pigment deposition in viscera associated with prolonged chlorpromazine therapy. Can Med Assoc J. 1964;91(12):627–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Rosen T, Aponte C. Cutaneous hyperpigmentation due to chronic quinine ingestion. Cutis. 2005;75(2):114–6.

    PubMed  Google Scholar 

  128. D’Agostino ML, Risser J, Robinson-Bostom L. Imipramine-induced hyperpigmentation: a case report and review of the literature. J Cutan Pathol. 2009;36(7):799–803.

    Article  PubMed  Google Scholar 

  129. Narurkar V, Smoller BR, Hu CH, Bauer EA. Desipramine-induced blue-gray photosensitive pigmentation. Arch Dermatol. 1993;129(4):474–6.

    Article  CAS  PubMed  Google Scholar 

  130. Desai N, Alexis AF, DeLeo VA. Facial hyperpigmentation caused by diltiazem hydrochloride. Cutis. 2010;86(2):82–4.

    PubMed  Google Scholar 

  131. Krause W. Drug-induced hperpigemntation: a systematic review. J Dtsch Dermatol Ges. 2013;11(7):644–51.

    PubMed  Google Scholar 

  132. Hommer A. A review of preserved and preservative-free prostaglandin analogues for the treatment of open-angle glaucoma and ocular hypertension. Drugs Today (Barc). 2010;46(6):409–16.

    Article  CAS  Google Scholar 

  133. Gordon G, Sparano BM, Iatropoulos MJ. Hyperpigmentation of the skin associated with minocycline therapy. Arch Dermatol. 1985;121(5):618–23.

    Article  CAS  PubMed  Google Scholar 

  134. Meyer AJ, Nahass GT. Hyperpigmented patches on the dorsa of the feet. Minocycline pigmentation. Arch Dermatol. 1995;131(12):1447.

    Article  CAS  PubMed  Google Scholar 

  135. Jalalat SZ, Cohen PR. Gefitinib-associated vitiligo: report in a man with parotid squamous cell carcinoma and review of drug-induced hypopigmentation. Dermatol Online J. 2013;19(10):20020.

    PubMed  Google Scholar 

  136. Vachiramon V, Thadanipon K. Postinflammatory hypopigmentation. Clin Exp Dermatol. 2011;36(7):708–14.

    Article  CAS  PubMed  Google Scholar 

  137. Cestari TF, Dantas LP, Boza JC. Acquired hyperpigmentations. An Bras Dermatol. 2014;89(1):11–25.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wu YH, Lin YC. Generalized Dowling-Degos disease. J Am Acad Dermatol. 2007;57(2):327–34.

    Article  PubMed  Google Scholar 

  139. Vasudevan B, Verma R, Badwal S, Pragasam V, Moorchung N, Badad A. A case of reticulate acropigmentation of kitamura: dowling degos disease overlap with unusual clinical manifestations. Indian J Dermatol. 2014;59(3):290–2.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kim YC, Davis MD, Schanbacher CF, Su WP. Dowling-Degos disease (reticulate pigmented anomaly of the flexures): a clinical and histopathologic study of 6 cases. J Am Acad Dermatol. 1999;40(3):462–7.

    Article  CAS  PubMed  Google Scholar 

  141. Gilchrist H, Jackson S, Morse L, Nicotri T, Nesbitt LT. Galli-Galli disease: a case report with review of the literature. J Am Acad Dermatol. 2008;58(2):299–302.

    Article  PubMed  Google Scholar 

  142. McCormack CJ, Cowen P. Haber’s syndrome. Australas J Dermatol. 1997;38(2):82–4.

    Article  CAS  PubMed  Google Scholar 

  143. Berth-Jones J, Graham-Brown RA. A family with Dowling Degos disease showing features of Kitamura’s reticulate acropigmentation. Br J Dermatol. 1989;120(3):463–6.

    Article  CAS  PubMed  Google Scholar 

  144. Braun-Falco M, Volgger W, Borelli S, Ring J, Disch R. Galli-Galli disease: an unrecognized entity or an acantholytic variant of Dowling-Degos disease? J Am Acad Dermatol. 2001;45(5):760–3.

    Article  CAS  PubMed  Google Scholar 

  145. Crovato F, Desirello G, Rebora A. Is Dowling-Degos disease the same disease as Kitamura’s reticulate acropigmentation? Br J Dermatol. 1983;109(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  146. Crovato F, Rebora A. Reticulate pigmented anomaly of the flexures associating reticulate acropigmentation: one single entity. J Am Acad Dermatol. 1986;14(2 Pt 2):359–61.

    Article  CAS  PubMed  Google Scholar 

  147. Muller CS, Pfohler C, Tilgen W. Changing a concept—controversy on the confusing spectrum of the reticulate pigmented disorders of the skin. J Cutan Pathol. 2009;36(1):44–8.

    Article  PubMed  Google Scholar 

  148. Müller CSL, Tremezaygues L, Pföhler C, Vogt T. The spectrum of reticulate pigment disorders of the skin revisited. Eur J Dermatol. 2012;22(5):596–604.

    PubMed  Google Scholar 

  149. Ostlere L, Holden CA. Dowling-Degos disease associated with Kitamura’s reticulate acropigmentation. Clin Exp Dermatol. 1994;19(6):492–5.

    Article  CAS  PubMed  Google Scholar 

  150. Zimmermann CC, Sforza D, Macedo PM, Azulay-Abulafia L, Alves MF, Carneiro SC. Dowling-Degos disease: classic clinical and histopathological presentation. An Bras Dermatol. 2011;86(5):979–82.

    Article  PubMed  Google Scholar 

  151. Rongioletti F, Fausti V, Christana K, Montinari M, Parodi A, Fiocca R. Atypical variant of galli-galli disease (grover-like eruption with lentiginous freckling) in a liver transplant patient. Am J Dermatopathol. 2011;33(5):504–7.

    Article  PubMed  Google Scholar 

  152. Lestringant GG, Masouye I, Frossard PM, Adeghate E, Galadari IH. Co-existence of leukoderma with features of Dowling-Degos disease: reticulate acropigmentation of Kitamura spectrum in five unrelated patients. Dermatology. 1997;195(4):337–43.

    Article  CAS  PubMed  Google Scholar 

  153. Oriba HA, Lo JS, Dijkstra JW, Bergfeld WF. Reticulate nonmelanocytic hyperpigmentation anomaly. A probable variant of Dowling-Degos disease. Int J Dermatol. 1991;30(1):39–42.

    Article  CAS  PubMed  Google Scholar 

  154. Howell JB, Freeman RG. Reticular pigmented anomaly of the flexures. Arch Dermatol. 1978;114(3):400–3.

    Article  CAS  PubMed  Google Scholar 

  155. Betz RC, Planko L, Eigelshoven S, Hanneken S, Pasternack SM, Bussow H, Van Den Bogaert K, Wenzel J, Braun-Falco M, Rutten A, Rogers MA, Ruzicka T, Nothen MM, Magin TM, Kruse R. Loss-of-function mutations in the keratin 5 gene lead to Dowling-Degos disease. Am J Hum Genet. 2006;78(3):510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liao H, Zhao Y, Baty DU, McGrath JA, Mellerio JE, McLean WH. A heterozygous frameshift mutation in the V1 domain of keratin 5 in a family with Dowling-Degos disease. J Invest Dermatol. 2007;127(2):298–300.

    Article  CAS  PubMed  Google Scholar 

  157. Herrmann H, Aebi U. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem. 2004;73:749–89.

    Article  CAS  PubMed  Google Scholar 

  158. Basmanav FB, Oprisoreanu AM, Pasternack SM, Thiele H, Fritz G, Wenzel J, Grosser L, Wehner M, Wolf S, Fagerberg C, Bygum A, Altmuller J, Rutten A, Parmentier L, El Shabrawi-Caelen L, Hafner C, Nurnberg P, Kruse R, Schoch S, Hanneken S, Betz RC. Mutations in POGLUT1, encoding protein O-glucosyltransferase 1, cause autosomal-dominant Dowling-Degos disease. Am J Hum Genet. 2014;94(1):135–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Li M, Cheng R, Liang J, Yan H, Zhang H, Yang L, Li C, Jiao Q, Lu Z, He J, Ji J, Shen Z, Hao F, Yu H, Yao Z. Mutations in POFUT1, encoding protein O-fucosyltransferase 1, cause generalized Dowling-Degos disease. Am J Hum Genet. 2013;92(6):895–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Acar M, Jafar-Nejad H, Takeuchi H, Rajan A, Ibrani D, Rana NA, Pan H, Haltiwanger RS, Bellen HJ. Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell. 2008;132(2):247–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fernandez-Valdivia R, Takeuchi H, Samarghandi A, Lopez M, Leonardi J, Haltiwanger RS, Jafar-Nejad H. Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development. 2011;138(10):1925–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Al Hawsawi K, Al Aboud K, Ramesh V, Al Aboud D. Dyschromatosis universalis hereditaria: report of a case and review of the literature. Pediatr Dermatol. 2002;19(6):523–6.

    Article  PubMed  Google Scholar 

  163. Nuber UA, Tinschert S, Mundlos S, Hauber I. Dyschromatosis universalis hereditaria: familial case and ultrastructural skin investigation. Am J Med Genet A. 2004;125a(3):261–6.

    Article  PubMed  Google Scholar 

  164. Sethuraman G, Srinivas CR, D’Souza M, Thappa DM, Smiles L. Dyschromatosis universalis hereditaria. Clin Exp Dermatol. 2002;27(6):477–9.

    Article  CAS  PubMed  Google Scholar 

  165. Kim NS, Im S, Kim SC. Dyschromatosis universalis hereditaria: an electron microscopic examination. J Dermatol. 1997;24(3):161–4.

    Article  CAS  PubMed  Google Scholar 

  166. Gupta A, Sharma Y, Dash KN, Verma S, Natarajan VT, Singh A. Ultrastructural investigations in an autosomal recessively inherited case of dyschromatosis universalis hereditaria. Acta Derm Venereol. 2014;95(6):738–40.

    Article  Google Scholar 

  167. Sorensen RH, Werner KA, Kobayashi TT. Dyschromatosis Universalis Hereditaria with Oral Leukokeratosis—a case of mistaken identity and review of the literature. Pediatr Dermatol. 2015;32(6):e283–7.

    Article  PubMed  Google Scholar 

  168. Stuhrmann M, Hennies HC, Bukhari IA, Brakensiek K, Nurnberg G, Becker C, Huebener J, Miranda MC, Frye-Boukhriss H, Knothe S, Schmidtke J, El-Harith EH. Dyschromatosis universalis hereditaria: evidence for autosomal recessive inheritance and identification of a new locus on chromosome 12q21-q23. Clin Genet. 2008;73(6):566–72.

    Article  CAS  PubMed  Google Scholar 

  169. Urabe K, Hori Y. Dyschromatosis. Semin Cutan Med Surg. 1997;16(1):81–5.

    Article  CAS  PubMed  Google Scholar 

  170. Cui YX, Xia XY, Zhou Y, Gao L, Shang XJ, Ni T, Wang WP, Fan XB, Yin HL, Jiang SJ, Yao B, Hu YA, Wang G, Li XJ. Novel mutations of ABCB6 associated with autosomal dominant dyschromatosis universalis hereditaria. PLoS One. 2013;8(11), e79808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Liu H, Li Y, Hung KK, Wang N, Wang C, Chen X, Sheng D, Fu X, See K, Foo JN, Low H, Liany H, Irwan ID, Liu J, Yang B, Chen M, Yu Y, Yu G, Niu G, You J, Zhou Y, Ma S, Wang T, Yan X, Goh BK, Common JE, Lane BE, Sun Y, Zhou G, Lu X, Wang Z, Tian H, Cao Y, Chen S, Liu Q, Zhang F. Genome-wide linkage, exome sequencing and functional analyses identify ABCB6 as the pathogenic gene of dyschromatosis universalis hereditaria. PLoS One. 2014;9(2), e87250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Zhang C, Li D, Zhang J, Chen X, Huang M, Archacki S, Tian Y, Ren W, Mei A, Zhang Q, Fang M, Su Z, Yin Y, Liu D, Chen Y, Cui X, Li C, Yang H, Wang Q, Wang J, Liu M, Deng Y. Mutations in ABCB6 cause dyschromatosis universalis hereditaria. J Invest Dermatol. 2013;133(9):2221–8.

    Article  CAS  PubMed  Google Scholar 

  173. Miyamura Y, Suzuki T, Kono M, Inagaki K, Ito S, Suzuki N, Tomita Y. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am J Hum Genet. 2003;73(3):693–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lee HJ, Shin DH, Choi JS, Kim KH. Hereditary sclerosing poikiloderma. J Korean Med Sci. 2012;27(2):225–7.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Greer KE, Weary PE, Nagy R, Robinow M. Hereditary sclerosing poikiloderma. Int J Dermatol. 1978;17(4):316–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Phung, T.L., Wright, T.S., Pourciau, C.Y., Smoller, B.R. (2017). Disorders of Pigmentation. In: Pediatric Dermatopathology. Springer, Cham. https://doi.org/10.1007/978-3-319-44824-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44824-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44822-0

  • Online ISBN: 978-3-319-44824-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics