Skip to main content

Intelligent Morphing and Steganography Techniques for Multimedia Security

  • Chapter
  • First Online:
Intelligent Techniques in Signal Processing for Multimedia Security

Part of the book series: Studies in Computational Intelligence ((SCI,volume 660))

Abstract

Data security plays an important role in today’s digital world. There is a potential need to do the research in the field of image morphing and steganography for data security. The development of morphing over the past years allows an organization into three categories of morphing algorithms namely geometric, interpolation and specialized algorithms depending upon the pixel mapping procedure. It gives an insight of how an appropriate morphing method is useful for different steganographic methods categorized into spatial domain, transform-based domain, spread spectrum, statistical and Internet Protocol. The geometric transformation morphing methods are more suitable in spatial domain steganography. This chapter includes the review of different morphing and steganography techniques. Hybrid approaches using morphing for steganography have a special status among steganographic systems as they combine both the features of morphing and steganography to overcome the shortcomings of individual methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen-Or D, Solomovici A, Levin D (1998) Three-dimensional distance field metamorphosis. ACM Trans Graph 17(2):116–141

    Article  Google Scholar 

  2. Arad N, Dyn N, Reisfeld D, Yeshurun Y (1994) Image warping by radial basis functions: applications to facial expressions. J Graph Models Image Process 56(2):161–172

    Article  Google Scholar 

  3. Bagade AM, Talbar SN (2014) A review of image morphing techniques. Elixir Electr Eng J 70(2):24076–24079

    Google Scholar 

  4. Kayarkar H, Sugata S (2012) A survey on various data hiding techniques and their comparative analysis. ACTA Techn Corviniensis 5(3):35–40

    Google Scholar 

  5. Acharjee S, Chakraborty S, Samanta S, Azar AT, Hassanien AE, Dey N (2014) Highly secured multilayered motion vector watermarking. In: Advanced machine learning technologies and applications. Springer, pp 121–134

    Google Scholar 

  6. Fant KM (1986) A nonaliasing real-time spatial transform technique. IEEE Comput Graph Appl 6(1):71–80

    Article  Google Scholar 

  7. Wolberg G (1990) Digital image warping. IEEE Computer Society, Los Alamitos, pp 222–240

    Google Scholar 

  8. Beier T, Neely S (1992) Feature-based image metamorphosis. Comput Graph 26(2):35–42

    Article  Google Scholar 

  9. Lee S, Wolberg G, Chwa K-Y, Shin SY (1996) Image metamorphosis with scattered feature constraints. IEEE Trans Vis Comput Graph 2(4):337–354

    Article  Google Scholar 

  10. Beier T, Costa B, Darsa L, Velho L (1977) Warping and morphing of graphics objects. Course notes siggraph

    Google Scholar 

  11. Vlad A (2010) Image morphing techniques. JIDEG 5(1):25–28

    Google Scholar 

  12. Klein R (1998) Multiresolution representation for surfaces meshes based on vertex decimation method. Comput Graph 22(1):13–26

    Article  Google Scholar 

  13. Lee AWF, Dobkin D, Sweldens W, Schröder P (1999) Multiresolution mesh morphing. Comput Graph Interact Techn 99:343–350

    Google Scholar 

  14. Bookstein FL (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 2(6):567–585

    Article  MATH  Google Scholar 

  15. Alexa M (2003) Differential coordinates for local mesh morphing and deformation. Vis Comp 105–114

    Google Scholar 

  16. Lee W-S, Thalmann NM (1998) Head modeling from pictures and morphing in 3D with image metamorphosis based on triangulation modeling and motion capture techniques for virtual environments. In: Lecture notes in computer science, pp 254–267

    Google Scholar 

  17. Bremermann H (1976) Pattern recognition by deformable prototypes in structural stability, the theory of catastrophes and applications in the sciences. In: Springer notes in mathematics, vol 25. Springer, pp 15–57

    Google Scholar 

  18. Bagade AM, Talbar SN (2010) Image morphing concept for secure transfer of image data contents over internet. J Comput Sci 6(9):987–992

    Article  Google Scholar 

  19. Sederberg TW, Greenwood E (1992) A physically based approach to 2D shape blending. Comput Graph 26(2):25–34

    Article  Google Scholar 

  20. Shoemake K, Duff T (1992) Matrix animation and polar decomposition. In: Proceedings of graphics interface, pp 258–264

    Google Scholar 

  21. Sederberg TW, Gao P, Wang G, Mu1 H (1993) 2D shape blending: an intrinsic solution to the vertex path problem. In: ACM computer graphics (proceedings of SIGGRAPH’93), pp 15–18

    Google Scholar 

  22. Zhang Y (1996) A fuzzy approach to digital image warping. IEEE Comput Graph Appl 16(4):34–41

    Article  Google Scholar 

  23. Palmer SD (1999) Vision science-photons to phenomenology. MIT Press, Cambridge, pp 171–185

    Google Scholar 

  24. Chen SE, Williams L (1993) View interpolation for image synthesis. In: (Proceedings of SIGGRAPH’93) computer graphics and interactive techniques, pp 279–288

    Google Scholar 

  25. Seitz SM, Dyer CR (1996) View morphing: synthesizing 3D metamorphoses using image transforms. In: (Proceedings of SIGGRAPH’96), pp 21–30

    Google Scholar 

  26. Shum H-Y, He L-W (1999) Rendering with concentric mosaics. In: (Proceedings of SIGGRAPH’99), pp 299–306

    Google Scholar 

  27. Endo T, Katayama A, Tamura H, Hirose M, Tanikawa T, Saito M (1998) Image-based walk-through system for large-scale scenes. In: Proceedings of VSMM’98, pp 269–274

    Google Scholar 

  28. Gong M, Yang Y-H (2001) Layered based morphing. Elsevier J Graph Models 63(1):45–59

    Article  MATH  Google Scholar 

  29. Whitaker RT (2000) A level-set approach to image blending. IEEE Trans Image Process 9(11):1849–1861

    Article  MathSciNet  MATH  Google Scholar 

  30. Hughes JF (1992) Scheduled Fourier volume morphing. In: ACM Proceedings of SIGGRAPH’92, pp 43–46

    Google Scholar 

  31. Cheung KK, Yu K, Kui K (1997) Volume invariant metamorphosis for solid and hollow rolled shape. Proc Shape Model 226–232

    Google Scholar 

  32. Chen L-L, Wang GF, Hsiao K-A, Liang J (2003) Affective product shapes through image morphing. In: Proceedings of DPPI’03, pp 11–16

    Google Scholar 

  33. Kanai T, Suzuki H, Kimura F (2000) Metamorphosis of arbitrary triangular meshes. IEEE Comput Graph Appl 20(2):62–75

    Article  Google Scholar 

  34. Dey N, Roy AB, Das A, Chaudhuri SS (2012) Stationary wavelet transformation based self-recovery of blind-watermark from electrocardiogram signal in wireless telecardiology. Recent Trends Comput Netw Distrib Syst Secur. Springer, Berlin, pp 347–357

    Chapter  Google Scholar 

  35. Dey N, Dey M, Mahata SK, Das A, Chaudhuri SS (2015) Tamper detection of electrocardiographic signal using watermarked bio-hash code in wireless cardiology. Int J Signal Imaging Syst Eng 8(1–2):46–58

    Article  Google Scholar 

  36. Gortler SJ, Grzeszczuk R, Szeliski R, Cohen MF (1996) The lumigraph. In: Proceedings of SIGGRAPH’96, pp 43–54

    Google Scholar 

  37. Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of SIGGRAPH’96, pp 31–42

    Google Scholar 

  38. Wang L, Lin S, Lee S, Guo B, Shum H-Y (2005) Light field morphing using 2D features. IEEE Trans Vis Comput Graph 11(1)

    Google Scholar 

  39. Zhang Z, Wang L, Guo B, Shum H-Y (2002) Feature-based light field morphing. ACM Trans Graph 21(3):457–464

    Article  Google Scholar 

  40. Chan C-K, Cheng LM (2004) Hiding data in images by simple LSB substitution. Elsevier J Pattern Recogn 37(3):469–474

    Article  MATH  Google Scholar 

  41. Yu L, Zhao Y, Ni R, Li T (2010) Improved adaptive LSB steganography based on chaos and genetic algorithm. EURASIP J Adv Signal Process 2010:1–6

    Google Scholar 

  42. Chang K-C, Huang PS, Tu T-M, Chang C-P (2008) A novel image steganographic method using tri-way pixel-value differencing. J Multimedia 3(2):37–44

    Google Scholar 

  43. Liao X, Wen Q, Zhang J (2011) A steganographic method for digital images with four-pixel differencing and modified LSB substitution. Elsevier J Vis Commun Image Represent 22:1–8

    Article  Google Scholar 

  44. Yadollahpour A, Naimi HM (2009) Attack on LSB steganography in color and grayscale images using autocorrelation coefficients. Eur J Sci Res 31(2):172–183

    Google Scholar 

  45. Hsieh C-H, Zhao Q (2006) Image enhancement and image hiding based on linear image fusion. In: Ubiquitous intelligence and computing, Lecture notes in computer science, vol 4159, pp 806–815

    Google Scholar 

  46. Bagade AM, Talbar SN (2014) A high quality steganographic method using morphing. KIPS J Inf Process Syst 10(2):256–270

    Article  Google Scholar 

  47. Yang C-H, Wang S-J (2006) Weighted bipartite graph for locating optimal LSB substitution for secret embedding. J Discrete Math Sci Cryptogr 9(1):152–154

    MathSciNet  MATH  Google Scholar 

  48. Wang Y, Moulin P (2008) Perfectly secure steganography: capacity, error exponents, and code constructions. IEEE Trans Inf Theory 54(6):2706–2722

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang X (2010) Efficient data hiding with plus–minus one or two. IEEE Signal Process Lett 17(7):635–638

    Article  Google Scholar 

  50. Liao X, Wen Q, Zhang J (2011) A steganographic method for digital images with four-pixel differencing and modified LSB substitution. Elsevier J Vis Commun Image Represent 22(1):1–8

    Article  Google Scholar 

  51. El-Emam NN (2007) Hiding a large amount of data with high security using steganography algorithm. J Comput Sci 3(4):223–232

    Article  Google Scholar 

  52. Wang C-M, Wu N-I, Tsai C-S, Hwang M-S (2007) A high quality steganographic method with pixel-value differencing and modulus function. J Syst Softw 1–8

    Google Scholar 

  53. Narayana S, Prasad G (2010) Two new approaches for secured image steganography using cryptographic techniques and type conversions. Signal Image Process Int J 1(2):60–73

    Article  Google Scholar 

  54. Regalia PA (2008) Cryptographic secrecy of steganographic matrix embedding. IEEE Trans Inf Forensics Secur 3(4):786–791

    Article  Google Scholar 

  55. Kharrazi M, Sencar HT, Memon N (2006) Improving steganalysis by fusion techniques: a case study with image steganography. Springer transactions on data hiding and multimedia security I, pp 123–137

    Google Scholar 

  56. Manjunatha Reddy HS, Raja KB (2010) High capacity and security steganography using discrete wavelet transform. Int J Comput Sci Secur 3(6):462–472

    Google Scholar 

  57. Westfeld A (2001) F5—a steganographic algorithm. In: Proceedings of the 4th international workshop on information hiding, pp 289–302

    Google Scholar 

  58. Hetzl S, Mutzel P (2005) A graph-theoretic approach to steganography. In: Lecture notes in computer science, pp 119–128

    Google Scholar 

  59. Dey N, Das P, Roy AB, Das A, Chaudhuri SS (2012) DWT-DCT-SVD based intravascular ultrasound video watermarking. In: 2012 World congress information and communication technologies (WICT), pp 224–229

    Google Scholar 

  60. Dey N, Mukhopadhyay S, Das A, Chaudhuri SS (2012) Analysis of P-QRS-T components modified by blind watermarking technique within the electrocardiogram signal for authentication in wireless telecardiology using DWT. Int J Image Graph Signal Process 4(7)

    Google Scholar 

  61. Dey N, Maji P, Das P, Biswas S, Das A, Chaudhuri SS (2013) Embedding of blink frequency in electrooculography signal using difference expansion based reversible watermarking technique. arXiv preprint arXiv:1304.2310

  62. Al-Ataby A, Al-Naima F (2010) A modified high capacity image steganography technique based on wavelet transform. Int Arab J Inf Technol 7(4):358–364

    Google Scholar 

  63. Upham D (1999) JSteg steganographic algorithm. Available on the internet ftp://ftp.funet.fi/pub/crypt/steganography

    Google Scholar 

  64. Provos N, Honeyman P (2003) Hide and Seek: an introduction to steganography. In: IEEE Computer Society, pp 32–44

    Google Scholar 

  65. Marvel LM, Boncelet CG, Retter CT (1999) Spread spectrum image steganography. IEEE Trans Image Process 8(8):1075–1083

    Article  Google Scholar 

  66. Dey N, Mishra G, Nandi B, Pal M, Das A, Chaudhuri SS (2012) Wavelet based watermarked normal and abnormal heart sound identification using spectrogram analysis. In: IEEE international conference on computational intelligence and computing research (ICCIC), pp 1–7

    Google Scholar 

  67. Dey N, Acharjee S, Biswas D, Das A, Chaudhuri SS (2013) Medical information embedding in compressed watermarked intravascular ultrasound video. arXiv preprint arXiv:1303.2211

  68. Banerjee S, Chakraborty S, Dey N, Kumar Pal A, Ray R (2015) High payload watermarking using residue number system. Int J Image Graph Signal Process 7(3):1–8

    Article  Google Scholar 

  69. Dey N, Samanta S, Yang XS, Das A, Chaudhuri SS (2013) Optimisation of scaling factors in electrocardiogram signal watermarking using cuckoo search. Int J Bio-Inspired Comput 5(5):315–332

    Article  Google Scholar 

  70. Provos N (2001) Defending against statistical steganalysis. In: Proceedings of the 10th conference on USENIX security symposium, vol 10, pp 24–24

    Google Scholar 

  71. Pal AK, Das P, Dey N (2013) Odd–even embedding scheme based modified reversible watermarking technique using Blueprint. arXiv preprint arXiv:1303.5972

  72. Sallee P (2004) Model-based steganography. Springer, IWDW, digital watermarking, pp 154–167

    Google Scholar 

  73. Solanki K, Sullivan K, Madhow U, Manjunath BS, Chandrasekaran S (2005) Statistical restoration for robust and secure steganography. In: IEEE international conference on image processing, vol 2, pp II-1118–II-1121

    Google Scholar 

  74. Keanini T (2005) Protecting TCP IP. Elsevier J Netw Secur 2005:13–16

    Article  Google Scholar 

  75. Murdoch SJ, Lewis S (2005) Embedding covert channel in TCP/IP. In: Lecture notes in computer science, vol 3727, pp 247–261

    Google Scholar 

  76. Bagade AM, Talba SN (2014) Secure transmission of morphed stego keys over Internet using IP steganography. Int J Inf Comput Secur 6(2):133–142

    Google Scholar 

  77. Ahsan K, Kundur D (2002) Covert channel analysis and data hiding in TCP/IP. M.A.Sc. thesis, Deptartment of Electrical and Computer Engineering, University of Toronto

    Google Scholar 

  78. Ahsan K, Kundur D (2006) Practical data hiding in TCP/IP. In: Proceedings of workshop on multimedia security at ACM multimedia

    Google Scholar 

  79. Panajotov B, Aleksanda M (2013) Covert channel in TCP/IP protocol stack. In: ICT innovations web proceedings, pp 190–199

    Google Scholar 

  80. Bellovin SM (2004) A look back at security problems in TCP/IP protocol suite. In: Proceedings of the 20th annual computer security applications, pp 229–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anant M. Bagade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bagade, A.M., Talbar, S.N. (2017). Intelligent Morphing and Steganography Techniques for Multimedia Security. In: Dey, N., Santhi, V. (eds) Intelligent Techniques in Signal Processing for Multimedia Security. Studies in Computational Intelligence, vol 660. Springer, Cham. https://doi.org/10.1007/978-3-319-44790-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44790-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44789-6

  • Online ISBN: 978-3-319-44790-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics