Skip to main content

Rapid Prototyping for the Engineering of Osteochondral Tissues

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 21))

Abstract

The reconstruction of complex joints represents one of the major challenges in Tissue Engineering, whose aim is to realize bioactive 3D grafts interacting with the articular environment while providing structural and mechanical functionality. Due to the complex hierarchical structure and the co-existence of several architectural organizations of natural articular tissue, a series of chemical-physical-biological features have to be carefully controlled and defined for a best tuning of the mechanical and functional properties of osteochondral tissues. However, the control over scaffold architecture using conventional manufacturing techniques is highly process dependent rather than design dependent. As a result, in the last years Rapid Prototyping (RP) techniques are proposed as promising alternative for 3D porous scaffolds fabrication, opening the possibility to realize engineered grafts with defined and reproducible complex internal structures, for an enhanced cellular response in vivo; moreover, implantable personalized articular tissue materials may be created individually for each patient according to the orthopedic requirements. In this Chapter, we will expose the major RP-based techniques, among them laser-, nozzled- and printed-based RP methods, with particular reference to the most cogent works in the field of joints repair.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, Mainil-Varlet P (2006) Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev 58(2):300–322

    Article  Google Scholar 

  2. Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    Article  Google Scholar 

  3. Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765. doi:10.1016/j.jbiomech.2006.03.008

    Article  Google Scholar 

  4. Buckwalter JA, Mankin HJ (1997) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504

    Google Scholar 

  5. O’Driscoll SW (1998) Current concepts review-the healing and regeneration of articular cartilage*. J Bone Joint Surg 80(12):1795–1812

    Google Scholar 

  6. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137

    Article  Google Scholar 

  7. Buckwalter JA (1998) Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 28(4):192–202

    Article  Google Scholar 

  8. Redman SN, Oldfield SF, Archer CW (2005) Current strategies for articular cartilage repair. Eur Cell Mater 9(23–32):23–32

    Google Scholar 

  9. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarth Cartil 10(6):432–463

    Article  Google Scholar 

  10. Grayson WL, Chao P-HG, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 26(4):181–189

    Article  Google Scholar 

  11. Coburn JM, Gibson M, Monagle S, Patterson Z, Elisseeff JH (2012) Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proc Natl Acad Sci 109(25):10012–10017. doi:10.1073/pnas.1121605109

    Article  Google Scholar 

  12. Malda J, Woodfield TB, van der Vloodt F, Wilson C, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2005) The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 26(1):63–72. doi:10.1016/j.biomaterials.2004.02.046

    Article  Google Scholar 

  13. Gao J, Dennis JE, Solchaga LA, Awadallah AS, Goldberg VM, Caplan AI (2001) Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng 7(4):363–371. doi:10.1089/10763270152436427

    Article  Google Scholar 

  14. Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75(1):156–167. doi:10.1002/jbm.a.30379

    Article  Google Scholar 

  15. Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38(6):2183–2196. doi:10.1007/s10439-010-0038-y

    Article  Google Scholar 

  16. Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28(1):116–124. doi:10.1002/jor.20958

    Google Scholar 

  17. Mano JF, Reis RL (2007) Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med 1(4):261–273. doi:10.1002/term.37

    Article  Google Scholar 

  18. Schaefer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, Bergin I, Vunjak-Novakovic G, Freed LE (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46(9):2524–2534. doi:10.1002/art.10493

    Article  Google Scholar 

  19. Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751

    Article  Google Scholar 

  20. Tampieri A, Sandri M, Landi E, Pressato D, Francioli S, Quarto R, Martin I (2008) Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 29(26):3539–3546. doi:10.1016/j.biomaterials.2008.05.008

    Article  Google Scholar 

  21. Giannoni P, Lazzarini E, Ceseracciu L, Barone AC, Quarto R, Scaglione S (2012) Design and characterization of a tissue-engineered bilayer scaffold for osteochondral tissue repair. J Tissue Eng Regen Med. doi:10.1002/term.1651

    Google Scholar 

  22. Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: Current strategies and challenges. Biotechnol Adv 31(5):706–721. doi:10.1016/j.biotechadv.2012.11.004

    Article  Google Scholar 

  23. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Google Scholar 

  24. Bohner M, Loosli Y, Baroud G, Lacroix D (2011) Commentary: deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater 7(2):478–484

    Google Scholar 

  25. Lynn AK, Best SM, Cameron RE, Harley BA, Yannas IV, Gibson LJ, Bonfield W (2010) Design of a multiphase osteochondral scaffold. I. Control of chemical composition. J Biomed Mater Res A 92(3):1057–1065

    Google Scholar 

  26. Scaglione S, Lazzarini E, Ilengo C, Quarto R (2010) A composite material model for improved bone formation. J Tissue Eng Regen Med 4(7):505–513

    Google Scholar 

  27. Suh SW, Shin JY, Kim J, Kim J, Beak CH, Kim D-I, Kim H, Jeon SS, Choo I-W (2002) Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. ASAIO J 48(5):460–464

    Article  Google Scholar 

  28. Yoon JJ, Park TG (2001) Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J Biomed Mater Res 55(3):401–408

    Article  Google Scholar 

  29. Nam YS, Yoon JJ, Park TG (2000) A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res 53(1):1–7

    Article  Google Scholar 

  30. Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 47(1):8–17

    Article  Google Scholar 

  31. Do Kim H, Bae EH, Kwon IC, Pal RR, Do Nam J, Lee DS (2004) Effect of PEG–PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation. Biomaterials 25(12):2319–2329

    Article  Google Scholar 

  32. Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082. doi:10.1016/S0142-9612(02)00635-X

    Article  Google Scholar 

  33. Polini A, Pisignano D, Parodi M, Quarto R, Scaglione S (2011) Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS One 6(10):e26211

    Article  Google Scholar 

  34. Yeong W-Y, Chua C-K, Leong K-F, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652

    Article  Google Scholar 

  35. Kon E, Delcogliano M, Filardo G, Altadonna G, Marcacci M (2009) Novel nano-composite multi-layered biomaterial for the treatment of multifocal degenerative cartilage lesions. Knee Surg Sports Traumatol Arthrosc 17(11):1312–1315. doi:10.1007/s00167-009-0819-8

    Article  Google Scholar 

  36. Sargeant TD, Desai AP, Banerjee S, Agawu A, Stopek JB (2012) An in situ forming collagen–PEG hydrogel for tissue regeneration. Acta Biomater 8(1):124–132. doi:10.1016/j.actbio.2011.07.028

    Article  Google Scholar 

  37. Alhadlaq A, Mao JJ (2005) Tissue-engineered osteochondral constructs in the shape of an articular condyle. J Bone Joint Surg Am. doi:10.2106/jbjs.d.02104

    Google Scholar 

  38. Alhadlaq A, Elisseeff JH, Hong L, Williams CG, Caplan AI, Sharma B, Kopher RA, Tomkoria S, Lennon DP, Lopez A, Mao JJ (2004) Adult stem cell driven genesis of human-shaped articular condyle. Ann Biomed Eng 32(7):911–923

    Article  Google Scholar 

  39. Mooney DJ, Cima L, Langer R, Johnson L, Hansen LK, Ingber DE, Vacant JP (1991) Principles of tissue engineering and reconstruction using polymer-cell constructs. In: MRS proceedings. Cambridge University Press, p 345

    Google Scholar 

  40. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428

    Article  Google Scholar 

  41. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378

    Article  Google Scholar 

  42. Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J CARS 5(4):335–341. doi:10.1007/s11548-010-0476-x

    Article  Google Scholar 

  43. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041. doi:10.1016/j.biomaterials.2012.04.050

    Article  Google Scholar 

  44. Schantz J-T, Brandwood A, Hutmacher DW, Khor HL, Bittner K (2005) Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling. J Mater Sci Mater Med 16(9):807–819

    Article  Google Scholar 

  45. Tellis B, Szivek J, Bliss C, Margolis D, Vaidyanathan R, Calvert P (2008) Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater Sci Eng C 28(1):171–178

    Article  Google Scholar 

  46. Kim K, Yeatts A, Dean D, Fisher JP (2010) Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev 16(5):523–539. doi:10.1089/ten.TEB.2010.0171

    Article  Google Scholar 

  47. Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG (2003) Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater 64(2):65–69. doi:10.1002/jbm.b.10485

    Article  Google Scholar 

  48. Woodfield TB, Malda J, de Wijn J, Peters F, Riesle J, van Blitterswijk CA (2004) Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25(18):4149–4161. doi:10.1016/j.biomaterials.2003.10.056

    Article  Google Scholar 

  49. Lee SJ, Kang HW, Park JK, Rhie JW, Hahn SK, Cho DW (2008) Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomed Microdevices 10(2):233–241. doi:10.1007/s10544-007-9129-4

    Article  Google Scholar 

  50. Yen H-J, Tseng C-S, S-h Hsu, Tsai C-L (2009) Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomed Microdevices 11(3):615–624. doi:10.1007/s10544-008-9271-7

    Article  Google Scholar 

  51. Chen C-H, Chen J-P, Lee M-Y (2011) Effects of gelatin modification on rapid prototyping PCL scaffolds for cartilage engineering. J Mech Med Biol 11(05):993–1002. doi:10.1142/S0219519411004848

    Article  Google Scholar 

  52. Schuller-Ravoo S, Teixeira SM, Feijen J, Grijpma DW, Poot AA (2013) Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins. Macromol Biosci 13(12):1711–1719. doi:10.1002/mabi.201300399

    Article  Google Scholar 

  53. Jacobs PF (1992) Rapid prototyping & manufacturing: fundamentals of stereolithography. The Society of Manufacturing Engineers, Dearborn.

    Google Scholar 

  54. Zhang X, Jiang X, Sun C (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sens Actuators A 77(2):149–156

    Article  Google Scholar 

  55. Lu Y, Mapili G, Suhali G, Chen S, Roy K (2006) A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res Part A 77(2):396–405. doi:10.1002/jbm.a.30601

    Article  Google Scholar 

  56. Melchels FP, Feijen J, Grijpma DW (2009) A poly(D, L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30(23–24):3801–3809. doi:10.1016/j.biomaterials.2009.03.055

    Article  Google Scholar 

  57. Choi J-W, Wicker R, Lee S-H, Choi K-H, Ha C-S, Chung I (2009) Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Technol 209(15–16):5494–5503. doi:10.1016/j.jmatprotec.2009.05.004

    Article  Google Scholar 

  58. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362. doi:10.1016/j.tibtech.2004.05.005

    Article  Google Scholar 

  59. Hinczewski C, Corbel S, Chartier T (1998) Ceramic suspensions suitable for stereolithography. J Eur Ceram Soc 18(6):583–590. doi:10.1016/S0955-2219(97)00186-6

    Article  Google Scholar 

  60. Matsuda T, Mizutani M, Arnold SC (2000) Molecular design of photocurable liquid biodegradable copolymers. 1. Synthesis and photocuring characteristics. Macromolecules 33(3):795–800

    Article  Google Scholar 

  61. Lee JW, Lan PX, Kim B, Lim G, Cho D-W (2007) 3D scaffold fabrication with PPF/DEF using micro-stereolithography. Microelectron Eng 84(5–8):1702–1705. doi:10.1016/j.mee.2007.01.267

    Article  Google Scholar 

  62. Matsuda T, Mizutani M (2002) Liquid acrylate-endcapped biodegradable poly(epsilon-caprolactone-co-trimethylene carbonate). II. Computer-aided stereolithographic microarchitectural surface photoconstructs. J Biomed Mater Res 62(3):395–403. doi:10.1002/jbm.10295

    Article  Google Scholar 

  63. Jansen J, Melchels FP, Grijpma DW, Feijen J (2008) Fumaric acid monoethyl ester-functionalized poly (D, L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromolecules 10(2):214–220

    Article  Google Scholar 

  64. Melchels FPW, Bertoldi K, Gabbrielli R, Velders AH, Feijen J, Grijpma DW (2010) Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31(27):6909–6916. doi:10.1016/j.biomaterials.2010.05.068

    Article  Google Scholar 

  65. Gabbrielli R, Turner I, Bowen CR (2008) Development of modelling methods for materials to be used as bone substitutes. Key Eng Mater 361:903–906

    Article  Google Scholar 

  66. Yoon JJ, Park TG (2001) Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J Biomed Mater Res 55(3):401–408

    Google Scholar 

  67. Nam YS, Yoon JJ, Park TG (2000) A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res Appl Biomater 53(1):1–7

    Google Scholar 

  68. Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. Biomed Mater Res 47(1):8–17

    Google Scholar 

  69. Kim SB, Kim YJ, Yoon TL, Park SA, Cho IH, Kim EJ, Kim IA, Shin, JW (2004) The characteristics of a hydroxyapatite–chitosan–PMMA bone cement. Biomaterials 25(26):5715–5723

    Google Scholar 

  70. Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082

    Google Scholar 

  71. Brady GA, Halloran JW (1997) Stereolithography of ceramic suspensions. Rapid Prototyp J 3(2):61–65. doi:10.1108/13552549710176680

    Article  Google Scholar 

  72. Licciulli A, Corcione CE, Greco A, Amicarelli V, Maffezzoli A (2004) Laser stereolithography of ZrO2 toughened Al2O3. J Eur Ceram Soc 24(15–16):3769–3777. doi:10.1016/j.jeurceramsoc.2003.12.024

    Article  Google Scholar 

  73. Chu TM, Orton DG, Hollister SJ, Feinberg SE, Halloran JW (2002) Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 23(5):1283–1293

    Article  Google Scholar 

  74. Bian W, Li D, Lian Q, Li X, Zhang W, Wang K, Jin Z (2012) Fabrication of a bio-inspired beta-Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering. Rapid Prototyp J 18(1):68–80. doi:10.1108/13552541211193511

    Article  Google Scholar 

  75. Zhang W, Lian Q, Li D, Wang K, Hao D, Bian W, He J, Jin Z (2014) Cartilage repair and subchondral bone migration using 3D printing osteochondral composites: a one-year-period study in rabbit trochlea. BioMed Res Int 2014:16. doi:10.1155/2014/746138

    Google Scholar 

  76. Ingavle GC, Frei AW, Gehrke SH, Detamore MS (2013) Incorporation of aggrecan in interpenetrating network hydrogels to improve cellular performance for cartilage tissue engineering. Tissue Eng Part A 19(11–12):1349–1359. doi:10.1089/ten.tea.2012.0160

    Article  Google Scholar 

  77. Nguyen QT, Hwang Y, Chen AC, Varghese S, Sah RL (2012) Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels. Biomaterials 33(28):6682–6690. doi:10.1016/j.biomaterials.2012.06.005

    Article  Google Scholar 

  78. Li X, Li D, Wang L, Lu B, Wang Z (2008) Osteoblast cell response to β-tricalcium phosphate scaffolds with controlled architecture in flow perfusion culture system. J Mater Sci Mater Med 19(7):2691–2697. doi:10.1007/s10856-008-3391-8

    Article  Google Scholar 

  79. Chen A, Klisch S, Bae W, Temple M, McGowan K, Gratz K, Schumacher B, Sah R (2004) Mechanical characterization of native and tissue-engineered cartilage. In: De Ceuninck F, Sabatini M, Pastoureau P (eds) Cartilage and osteoarthritis, vol 101. Methods in molecular medicine. Humana Press, New York, pp 157–190. doi:10.1385/1-59259-821-8:157

    Chapter  Google Scholar 

  80. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27(4):375–389. doi:10.1016/0021-9290(94)90014-0

    Article  Google Scholar 

  81. Zhang W, Lian Q, Li D, Wang K, Hao D, Bian W, Jin Z (2015) The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing. Mater Sci Eng C 46:10–15. doi:10.1016/j.msec.2014.09.042

    Article  Google Scholar 

  82. Walters B (1991) Fast, precise, safe prototypes with FDM. In: 39th Annual technical meeting, p 1991

    Google Scholar 

  83. Hoque M, Hutmacher D, Feng W, Li S, Huang M-H, Vert M, Wong Y (2005) Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering. J Biomater Sci Polym Ed 16(12):1595–1610

    Article  Google Scholar 

  84. Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104. doi:10.1016/j.progpolymsci.2011.11.007

    Article  Google Scholar 

  85. Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185. doi:10.1016/S0142-9612(01)00232-0

    Article  Google Scholar 

  86. Swieszkowski W, Tuan BH, Kurzydlowski KJ, Hutmacher DW (2007) Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 24(5):489–495. doi:10.1016/j.bioeng.2007.07.014

    Article  Google Scholar 

  87. Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, Dai K (2013) Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 34(28):6706–6716. doi:10.1016/j.biomaterials.2013.05.038

    Article  Google Scholar 

  88. Liu L, Xiong Z, Yan Y, Hu Y, Zhang R, Wang S (2007) Porous morphology, porosity, mechanical properties of poly (α-hydroxy acid)–tricalcium phosphate composite scaffolds fabricated by low-temperature deposition. J Biomed Mater Res Part A 82(3):618–629

    Article  Google Scholar 

  89. Xiong Z, Yan Y, Wang S, Zhang R, Zhang C (2002) Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater 46(11):771–776

    Article  Google Scholar 

  90. Liu L, Xiong Z, Yan Y, Zhang R, Wang X, Jin L (2009) Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds. J Biomed Mater Res B Appl Biomater 88(1):254–263. doi:10.1002/jbm.b.31176

    Article  Google Scholar 

  91. Park TG (1995) Degradation of poly (lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials 16(15):1123–1130

    Article  Google Scholar 

  92. Lee SJ, Khang G, Lee YM, Lee HB (2002) Interaction of human chondrocytes and NIH/3T3 fibroblasts on chloric acid-treated biodegradable polymer surfaces. J Biomater Sci Polym Ed 13(2):197–212

    Article  Google Scholar 

  93. Yuan H, De Bruijn JD, Zhang X, Van Blitterswijk CA, De Groot K (2001) Use of an osteoinductive biomaterial as a bone morphogenetic protein carrier. J Mater Sci Mater Med 12(9):761–766

    Article  Google Scholar 

  94. Qu S, Leng Y, Guo X, Cheng J, Chen W, Yang Z, Zhang X (2002) Histological and ultrastructural analysis of heterotopic osteogenesis in porous calcium phosphate ceramics. J Mater Sci Lett 21(2):153–155

    Article  Google Scholar 

  95. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554. doi:10.1016/j.tibtech.2012.07.005

    Article  Google Scholar 

  96. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  Google Scholar 

  97. Lam CXF, Mo XM, Teoh S-H, Hutmacher DW (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20(1):49–56

    Article  Google Scholar 

  98. Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, Seitz H (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16(12):1121–1124

    Article  Google Scholar 

  99. Santos ARC, Almeida HA, Bártolo PJ (2013) Additive manufacturing techniques for scaffold-based cartilage tissue engineering: a review on various additive manufacturing technologies in generating scaffolds for cartilage tissue engineering. Virtual Phys Prototyp 8(3):175–186

    Article  Google Scholar 

  100. Scaglione S, Ceseracciu L, Aiello M, Coluccino L, Ferrazzo F, Giannoni P, Quarto R (2014) A novel scaffold geometry for chondral applications: theoretical model and in vivo validation. Biotechnol Bioeng 111(10):2107–2119. doi:10.1002/bit.25255

    Article  Google Scholar 

  101. Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y (2010) Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2(1):014110

    Article  Google Scholar 

  102. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161

    Article  Google Scholar 

  103. Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917

    Article  Google Scholar 

  104. Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJ (2008) Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng Part A 14(1):127–133. doi:10.1089/ten.a.2007.0158

    Article  Google Scholar 

  105. Shim JH, Lee JS, Kim JY, Cho DW (2012) Bioprinting of a mechanically enhanced threedimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 22(8):085014

    Google Scholar 

  106. Fedorovich NE, Swennen I, Girones J, Moroni L, van Blitterswijk CA, Schacht E, Alblas J, Dhert WJ (2009) Evaluation of photocrosslinked Lutrol hydrogel for tissue printing applications. Biomacromolecules 10(7):1689–1696. doi:10.1021/bm801463q

    Article  Google Scholar 

  107. Shim JH, Kim JY, Park M, Park J, Cho DW (2011) Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication 3(3):034102. doi:10.1088/1758-5082/3/3/034102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Scaglione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Marrella, A., Cavo, M., Scaglione, S. (2017). Rapid Prototyping for the Engineering of Osteochondral Tissues. In: Oliveira, J., Reis, R. (eds) Regenerative Strategies for the Treatment of Knee Joint Disabilities. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-44785-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44785-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44783-4

  • Online ISBN: 978-3-319-44785-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics