Skip to main content

Fundamentals on Osteochondral Tissue Engineering

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 21))

Abstract

The repair and regeneration of osteochondral (OC) defects has been increasing owing the high number of diseases, trauma and injuries. Although current clinical options are effective for the treatment of the OC lesions, new therapeutic options are necessary for the complete regeneration of the damaged articular cartilage which has a limited healing capacity. OC tissue engineering has been proposing advanced tools and technologies involving structured scaffolds, bioactive molecules, and cells for the repair and regeneration of the bone and cartilage tissues, as well as their interface. Multi-phased or stratified scaffolds with distinct bone and cartilage sections have been designed for OC repair. Diverse forms, as porous scaffolds, fibres, and hydrogels are the most commonly strategies used for OC tissue engineering. This chapter presents the current treatment and biomimetic strategies for OC tissue engineering. Structure and properties of the OC tissue are also briefly described.

Viviana Ribeiro and Sandra Pina have contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31(5):706–721

    Article  Google Scholar 

  2. Xing LZ, Jiang YQ, Gui JC, Lu YM, Gao F, Xu Y, Xu Y (2013) Microfracture combined with osteochondral paste implantation was more effective than microfracture alone for full-thickness cartilage repair. Knee Surg Sport Traumatol Arthrosc 21(8):1770–1776

    Article  Google Scholar 

  3. Kim YS, Park EH, Lee HJ, Koh YG, Lee JW (2012) Clinical comparison of the osteochondral autograft transfer system and subchondral drilling in osteochondral defects of the first metatarsal head. Am J Sport Med 40(8):1824–1833

    Article  Google Scholar 

  4. de Girolamo L, Quaglia A, Bait C, Cervellin M, Prospero E, Volpi P (2012) Modified autologous matrix-induced chondrogenesis (AMIC) for the treatment of a large osteochondral defect in a varus knee: a case report. Knee Surg Sport Traumatol Arthrosc 20(11):2287–2290

    Article  Google Scholar 

  5. Miska M, Wiewiorski M, Valderrabano V (2012) Reconstruction of a large osteochondral lesion of the distal tibia with an iliac crest graft and autologous matrix-induced chondrogenesis (AMIC): a case report. J Foot Ankle Surg 51(5):680–683

    Article  Google Scholar 

  6. Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35(4):403–440

    Article  Google Scholar 

  7. Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ (2010) Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res A 92A(3):1078–1093

    Google Scholar 

  8. Nooeaid P, Salih V, Beier JP, Boccaccini AR (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16(10):2247–2270

    Article  Google Scholar 

  9. Yang PJ, Temenoff JS (2009) Engineering orthopedic tissue interface. Tissue Eng Part B 15(2):127–141

    Article  Google Scholar 

  10. Shrivats AR, McDermott MC, Hollinger JO (2014) Bone tissue engineering: state of the union. Drug Discov Today 19(6):781–786

    Article  Google Scholar 

  11. Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765

    Article  Google Scholar 

  12. Yan L, Oliveira J, Oliveira A, Reis R (2014) Silk fibroin/nano-CaP bilayered scaffolds for osteochondral tissue engineering. Key Eng Mater 587:245

    Article  Google Scholar 

  13. Mano J, Silva G, Azevedo H, Malafaya P, Sousa R, Silva S, Reis R (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030

    Article  Google Scholar 

  14. Bohner M (2000) Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury-Int J Care Injured 31:37–47

    Article  Google Scholar 

  15. Dorozhkin S (2009) Calcium orthophosphates in nature. Biol Med Mater 2:399–498

    Google Scholar 

  16. Verbruggen G, Wang J, Elewaut D, Veys EM (2004) Biology of articular cartilage. In: Proceedings of the 5th symposium of the international cartilage repair society—ICRS, pp 21–25

    Google Scholar 

  17. Swieszkowski W, Tuan BHS, Kurzydlowski KJ, Hutmacher DW (2007) Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 24(5):489–495

    Article  Google Scholar 

  18. Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage—a template for tissue repair. Clin Orthop Relat Res 391:S26–S33

    Article  Google Scholar 

  19. García-Carvajal ZY, Garciadiego-Cázares D, Parra-Cid C, Aguilar-Gaytán R, Velasquillo C, Ibarra C, Carmona JSC (2013) Cartilage tissue engineering: the role of extracellular matrix (ECM) and novel strategies. Regen Med Tissue Eng, 365–397. InTech, Croatia

    Google Scholar 

  20. Athanasiou KA, Zhu CF, Wang X, Agrawal CM (2000) Effects of aging and dietary restriction on the structural integrity of rat articular cartilage. Ann Biomed Eng 28(2):143–149

    Article  Google Scholar 

  21. Pearle AD, Warren RF, Rodeo SA (2005) Basic science of articular cartilage and osteoarthritis. Clin Sport Med 24(1):1

    Article  Google Scholar 

  22. Khalafi A, Schmid TM, Neu C, Reddi AH (2007) Increased accumulation of superficial zone protein (SZP) in articular cartilage in response to bone morphogenetic protein-7 and growth factors. J Orthop Res 25(3):293–303

    Article  Google Scholar 

  23. Neu CP, Khalafi A, Komvopoulos K, Schmid TM, Reddi AH (2007) Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling. Arthritis Rheum 56(11):3706–3714

    Article  Google Scholar 

  24. Korhonen RK, Julkunen P, Wilson W, Herzog W (2008) Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes. J Biomech Eng-T ASME 130(2):021003

    Google Scholar 

  25. Huber M, Trattnig S, Lintner F (2000) Anatomy, biochemistry, and physiology of articular cartilage. Invest Radiol 35(10):573–580

    Article  Google Scholar 

  26. Lyons TJ, Stoddart RW, McClure SF, McClure J (2005) The tidemark of the chondro-osseous junction of the normal human knee joint. J Mol Histol 36(3):207–215

    Article  Google Scholar 

  27. Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4(1):30–35

    Google Scholar 

  28. Hyc A, Osiecka-Iwan A, Jozwiak J, Moskalewski S (2001) The morphology and selected biological properties of articular cartilage. Ortop Traumatol Rehabil 3(2):151–162

    Google Scholar 

  29. Zizak I, Roschger P, Paris O, Misof BM, Berzlanovich A, Bernstorff S, Amenitsch H, Klaushofer K, Fratzl P (2003) Characteristics of mineral particles in the human bone/cartilage interface. J Struct Biol 141(3):208–217

    Article  Google Scholar 

  30. Lu HH, Subramony SD, Boushell MK, Zhang XZ (2010) Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann Biomed Eng 38(6):2142–2154

    Article  Google Scholar 

  31. Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sport Traumatol Arthrosc 18(4):419–433

    Article  Google Scholar 

  32. Costa-Pinto AR, Reis RL, Neves NM (2011) Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B-Rev 17(5):331–347

    Article  Google Scholar 

  33. Cordonnier T, Sohier J, Rosset P, Layrolle P (2011) Biomimetic materials for bone tissue engineering—state of the art and future trends. Adv Eng Mater 13(5):B135–B150

    Article  Google Scholar 

  34. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: State of the art and future trends. Macromol Biosci 4(8):743–765

    Article  Google Scholar 

  35. Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1(4):245–260

    Article  Google Scholar 

  36. Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289(5484):1501–1504

    Article  Google Scholar 

  37. Mackie EJ (2003) Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol 35(9):1301–1305

    Article  Google Scholar 

  38. Sommerfeldt DW, Rubin CT (2001) Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J 10:S86–S95

    Article  Google Scholar 

  39. Sundelacruz S, Kaplan DL (2009) Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol 20(6):646–655. doi:10.1016/j.semcdb.2009.03.017

    Article  Google Scholar 

  40. Kawcak CE, McIlwraith CW, Norrdin RW, Park RD, James SP (2001) The role of subchondral bone in joint disease: a review. Equine Vet J 33(2):120–126

    Article  Google Scholar 

  41. Mahmoudifar N, Doran PM (2005) Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors. Biomaterials 26(34):7012–7024

    Article  Google Scholar 

  42. Dahlin RL, Kinard LA, Lam J, Needham CJ, Lu S, Kasper FK, Mikos AG (2014) Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials 35(26):7460–7469

    Article  Google Scholar 

  43. Kon E, Filardo G, Perdisa F, Venieri G, Marcacci M (2014) Acellular matrix–based cartilage regeneration techniques for osteochondral repair. Oper Tech Orthop 24(1):14–18

    Article  Google Scholar 

  44. Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751

    Article  Google Scholar 

  45. Burr DB (2004) Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarth Cartil 12:20–30

    Google Scholar 

  46. Moisio K, Eckstein F, Chmiel JS, Guermazi A, Prasad P, Almagor O, Song J, Dunlop D, Hudelmaier M, Kothari A, Sharma L (2009) Denuded subchondral bone and knee pain in persons with knee osteoarthritis. Arthritis Rheum 60(12):3703–3710

    Article  Google Scholar 

  47. Thorrez L, Shansky J, Wang L, Fast L, VandenDriessche T, Chuah M, Mooney D, Vandenburgh H (2008) Growth, differentiation, transplantation and survival of human skeletal myofibers on biodegradable scaffolds. Biomaterials 29(1):75–84

    Article  Google Scholar 

  48. Hou Q, Grijpma D, Feijen J (2003) Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials 24:1937–1947

    Article  Google Scholar 

  49. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27:6123–6137

    Article  Google Scholar 

  50. Dehghani F, Annabi N (2011) Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol 22:661–666

    Article  Google Scholar 

  51. vande Witte P, Dijkstra P, vanden Berg J, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117:1–31

    Article  Google Scholar 

  52. Woodfield TBF, Guggenheim M, Von Rechenberg B, Riesle J, Van Blitterswijk CA, Wedler V (2009) Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints. Cell Prolif 42(4):485–497

    Article  Google Scholar 

  53. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Article  Google Scholar 

  54. Kim K, Yeatts A, Dean D (2010) Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev 16:523–539

    Article  Google Scholar 

  55. Yan LP, Silva-Correia J, Correia C, Caridade SG, Fernandes EM, Sousa RA, Mano JF, Oliveira JM, Oliveira AL, Reis RL (2013) Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine (Lond) 8(3):359–378

    Article  Google Scholar 

  56. Wang Y, Meng H, Yuan X, Peng J, Guo Q, Lu S, Wang A (2014) Fabrication and in vitro evaluation of an articular cartilage extracellular matrix-hydroxyapatite bilayered scaffold with low permeability for interface tissue engineering. Biomed Eng Online 13:80

    Article  Google Scholar 

  57. Yao Q, Nooeaid P, Detsch R, Roether JA, Dong Y, Goudouri OM, Schubert DW, Boccaccini AR (2014) Bioglass((R))/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering. J Biomed Mater Res A 102(12):4510–4518

    Google Scholar 

  58. Harley B, Lynn A, Wissner-Gross Z, Bonfield W, Yannas I, Gibson L (2010) Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res A 92:1078–1093

    Google Scholar 

  59. Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, Wang R, Guo T, Zhao J, Zhang J (2011) Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32(21):4793–4805

    Article  Google Scholar 

  60. Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS (2011) Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng Part A 17(21–22):2845–2855

    Article  Google Scholar 

  61. Ding X, Zhu M, Xu B, Zhang J, Zhao Y, Ji S, Wang L, Wang L, Li X, Kong D, Ma X, Yang Q (2014) Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells. ACS Appl Mater Interfaces 6(19):16696–16705

    Article  Google Scholar 

  62. Ng R, Zang R, Yang K, Liu N, Yang S (2012) Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering. RSC Adv 2:10110–10124

    Article  Google Scholar 

  63. Hong J, Madihally S (2011) Next generation of electrosprayed fibers for tissue regeneration. Tissue Eng Part B Rev 17:125–142

    Article  Google Scholar 

  64. Yunos DM, Ahmad Z, Salih V, Boccaccini AR (2013) Stratified scaffolds for osteochondral tissue engineering applications: electrospun PDLLA nanofibre coated Bioglass(R)-derived foams. J Biomater Appl 27(5):537–551

    Article  Google Scholar 

  65. Zhang S, Chen L, Jiang Y, Cai Y, Xu G, Tong T, Zhang W, Wang L, Ji J, Shi P, Ouyang HW (2013) Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater 9(7):7236–7247

    Article  Google Scholar 

  66. Filová E, Rampichová M, Litvinec A, Držík M, Míčková A, Buzgo M, Košťáková E, Martinová L, Usvald D, Prosecká E, Uhlík J, Motlík J, Vajner L, Amler E (2013) A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs. Int J Pharm 447(1–2):139–149

    Article  Google Scholar 

  67. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21(32–33):3307–3329

    Article  Google Scholar 

  68. Annabi N, Nichol J, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 16:371–383

    Article  Google Scholar 

  69. Pereira D, Canadas R, Silva-Correia J, Marques A, Reis R, Oliveira J (2014) Gellan gum-based hydrogel bilayered scaffolds for osteochondral tissue engineering. Key Eng Mater 587:255–260

    Article  Google Scholar 

  70. Rodrigues MT, Lee SJ, Gomes ME, Reis RL, Atala A, Yoo JJ (2012) Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Acta Biomater 8(7):2795–2806

    Article  Google Scholar 

  71. Guo X, Liao J, Park H, Saraf A, Raphael RM, Tabata Y, Kasper FK, Mikos AG (2010) The effects of TGF-β3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite. Acta Biomater 6(8):2920–2931

    Article  Google Scholar 

  72. Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK (2013) Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Controll Release 168(2):166–178

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to this work has received funding from the European Union’s Seventh Framework Program (FP7/2007-2013) under grant Agreement No REGPOT-CT2012-316331-POLARIS, and from QREN (ON.2—NORTE-01-0124-FEDER-000016) cofinanced by North Portugal Regional Operational Program (ON.2—O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF). Thanks are also due to the Portuguese Foundation for Science and Technology (FCT) and FSE/POCH (Fundo Social Europeu através do Programa Operacional do Capital Humano), PD/59/2013, for the project PEst-C/SAU/LA0026/201, for the fellowship grants of Sandra Pina (SFRH/BPD/108763/2015) and Viviana Ribeiro (PD/BD/113806/2015), and for the distinction attributed to J.M. Oliveira under the Investigator FCT program (IF/00423/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ribeiro, V., Pina, S., Oliveira, J.M., Reis, R.L. (2017). Fundamentals on Osteochondral Tissue Engineering. In: Oliveira, J., Reis, R. (eds) Regenerative Strategies for the Treatment of Knee Joint Disabilities. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-44785-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44785-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44783-4

  • Online ISBN: 978-3-319-44785-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics