Skip to main content

Clinical Management of Articular Cartilage Lesions

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 21))

Abstract

Articular cartilage is extremely sensitive to traumatic lesions and natural repair is very limited. When regeneration occur the tissue found in the lesion site is mostly fibrocartilage with poor mechanical properties, rendering a poor long-term clinical outcome. Cartilage lesion is a common problem with an impressive clinical and economic impact. With a difficult diagnosis in an initial disease stage, the cartilage lesion can progress to osteoarthritis and, therefore, a prompt diagnosis and treatment is required. Clinical management of cartilage lesions is a very demanding issue and the treatment is dependent of the extension, depth, location, chronicity of the lesions, patient’s conditions and patients’ expectations as well as associated lesions. In the present chapter, we present the clinical findings and diagnosis methodology to identify a cartilage lesion in an early stage. Finally, we discuss the indications, contra-indications, advantages, disadvantages and treatment decision-making as well as the outcomes of the available therapeutic approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aroen A, Loken S, Heir S, Alvik E, Ekeland A, Granlund OG et al (2004) Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 32(1):211–215

    Article  Google Scholar 

  2. Ashton E, Riek J (2013) Advanced MR techniques in multicenter clinical trials. J Magn Reson Imaging 37(4):761–769

    Article  Google Scholar 

  3. Asik M, Ciftci F, Sen C, Erdil M, Atalar A (2008) The microfracture technique for the treatment of full-thickness articular cartilage lesions of the knee: midterm results. Arthroscopy 24(11):1214–1220

    Article  Google Scholar 

  4. Batty L, Dance S, Bajaj S, Cole BJ (2011) Autologous chondrocyte implantation: an overview of technique and outcomes. ANZ J Surg 81(1–2):18–25

    Article  Google Scholar 

  5. Baum T, Joseph GB, Nardo L, Virayavanich W, Arulanandan A, Alizai H et al (2013) Correlation of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with body mass index: thirty-six-month followup data from a longitudinal, observational multicenter study. Arthritis Care Res 65(1):23–33

    Article  Google Scholar 

  6. Bentley G, Bhamra JS, Gikas PD, Skinner JA, Carrington R, Briggs TW (2013) Repair of osteochondral defects in joints—how to achieve success. Injury 44(Suppl 1):S3–S10

    Article  Google Scholar 

  7. Biant LC, Bentley G, Vijayan S, Skinner JA, Carrington RW (2014) Long-term results of autologous chondrocyte implantation in the knee for chronic chondral and osteochondral defects. Am J Sports Med 42(9):2178–2183

    Article  Google Scholar 

  8. Braun HJ, Dragoo JL, Hargreaves BA, Levenston ME, Gold GE (2013) Application of advanced magnetic resonance imaging techniques in evaluation of the lower extremity. Radiol Clin N Am 51(3):529–545

    Article  Google Scholar 

  9. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69

    Google Scholar 

  10. Brown TD, Shaw DT (1984) In vitro contact stress distribution on the femoral condyles. J Orthop Res 2(2):190–199

    Article  Google Scholar 

  11. Casscells SW (1990) Outerbridge’s ridges. Arthroscopy 6(4):253

    Article  Google Scholar 

  12. Casula V, Hirvasniemi J, Lehenkari P, Ojala R, Haapea M, Saarakkala S et al (2014) Association between quantitative MRI and ICRS arthroscopic grading of articular cartilage. Knee Surg Sports Traumatol Arthrosc 24:2046–2054

    Google Scholar 

  13. Chan DD, Neu CP (2013) Probing articular cartilage damage and disease by quantitative magnetic resonance imaging. J R Soc Interface 10(78):20120608

    Article  Google Scholar 

  14. Chan WP, Lang P, Stevens MP, Sack K, Majumdar S, Stoller DW et al (1991) Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. AJR Am J Roentgenol 157(4):799–806

    Article  Google Scholar 

  15. Chung JY, Lee DH, Kim TH, Kwack KS, Yoon KH, Min BH (2014) Cartilage extra-cellular matrix biomembrane for the enhancement of microfractured defects. Knee Surg Sports Traumatol Arthrosc 22(6):1249–1259

    Article  Google Scholar 

  16. Cohen ZA, McCarthy DM, Kwak SD, Legrand P, Fogarasi F, Ciaccio EJ et al (1999) Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthr Cartil 7(1):95–109

    Article  Google Scholar 

  17. Crema MD, Felson DT, Roemer FW, Wang K, Marra MD, Nevitt MC et al (2013) Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: the MOST study. Osteoarthr Cartil 21(2):306–313

    Article  Google Scholar 

  18. Crema MD, Roemer FW, Marra MD, Burstein D, Gold GE, Eckstein F et al (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31(1):37–61

    Article  Google Scholar 

  19. Cucchiarini M, Madry H, Guilak F, Saris DB, Stoddart MJ, Koon Wong M et al (2014) A vision on the future of articular cartilage repair. Eur Cell Mater 27:12–16

    Google Scholar 

  20. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13(4):456–460

    Article  Google Scholar 

  21. Delcogliano M, de Caro F, Scaravella E, Ziveri G, De Biase CF, Marotta D et al (2014) Use of innovative biomimetic scaffold in the treatment for large osteochondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 22(6):1260–1269

    Google Scholar 

  22. Dewan AK, Gibson MA, Elisseeff JH, Trice ME (2014) Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. Biomed Res Int 2014:272481

    Article  Google Scholar 

  23. Dhollander AA, Verdonk PC, Lambrecht S, Verdonk R, Elewaut D, Verbruggen G et al (2012) Short-term outcome of the second generation characterized chondrocyte implantation for the treatment of cartilage lesions in the knee. Knee Surg Sports Traumatol Arthrosc 20(6):1118–1127

    Article  Google Scholar 

  24. Dutcheshen N, Maerz T, Rabban P, Haut RC, Button KD, Baker KC et al (2012) The acute effect of bipolar radiofrequency energy thermal chondroplasty on intrinsic biomechanical properties and thickness of chondromalacic human articular cartilage. J Biomech Eng 134(8):081007

    Article  Google Scholar 

  25. Enea D, Cecconi S, Busilacchi A, Manzotti S, Gesuita R, Gigante A (2012) Matrix-induced autologous chondrocyte implantation (MACI) in the knee. Knee Surg Sports Traumatol Arthrosc 20(5):862–869

    Article  Google Scholar 

  26. Enochson L, Sonnergren HH, Mandalia VI, Lindahl A (2012) Bipolar radiofrequency plasma ablation induces proliferation and alters cytokine expression in human articular cartilage chondrocytes. Arthroscopy 28(9):1275–1282

    Article  Google Scholar 

  27. Eskelinen AP, Visuri T, Larni HM, Ritsila V (2004) Primary cartilage lesions of the knee joint in young male adults. Overweight as a predisposing factor. An arthroscopic study. Scand J Surg 93(3):229–233

    Google Scholar 

  28. Espregueira-Mendes J, Pereira H, Sevivas N, Varanda P, da Silva MV, Monteiro A et al (2012) Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions. Knee Surg Sports Traumatol Arthrosc 20(6):1136–1142

    Article  Google Scholar 

  29. Farr J, Cole B, Dhawan A, Kercher J, Sherman S (2011) Clinical cartilage restoration: evolution and overview. Clin Orthop Relat Res 469(10):2696–2705

    Article  Google Scholar 

  30. Felson DT, Niu J, Gross KD, Englund M, Sharma L, Cooke TD et al (2013) Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from the Multicenter Osteoarthritis Study and the Osteoarthritis Initiative. Arthritis Rheum 65(2):355–362

    Article  Google Scholar 

  31. Filardo G, Madry H, Jelic M, Roffi A, Cucchiarini M, Kon E (2013) Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc 21(8):1717–1729

    Article  Google Scholar 

  32. Foldager CB (2013) Advances in autologous chondrocyte implantation and related techniques for cartilage repair. Dan Med J 60(4):B4600

    Google Scholar 

  33. Foldager CB, Bunger C, Nielsen AB, Ulrich-Vinther M, Munir S, Everland H et al (2012) Dermatan sulphate in methoxy polyethylene glycol–polylactide–co-glycolic acid scaffolds upregulates fibronectin gene expression but has no effect on in vivo osteochondral repair. Int Orthop 36(7):1507–1513

    Article  Google Scholar 

  34. Furuzawa-Carballeda J, Lima G, Llorente L, Nunez-Alvarez C, Ruiz-Ordaz BH, Echevarria-Zuno S et al (2012) Polymerized-type I collagen downregulates inflammation and improves clinical outcomes in patients with symptomatic knee osteoarthritis following arthroscopic lavage: a randomized, double-blind, and placebo-controlled clinical trial. Sci World J 2012:342854

    Article  Google Scholar 

  35. Giorgini A, Donati D, Cevolani L, Frisoni T, Zambianchi F, Catani F (2013) Fresh osteochondral allograft is a suitable alternative for wide cartilage defect in the knee. Injury 44(Suppl 1):S16–S20

    Article  Google Scholar 

  36. Glaser C, Tins BJ, Trumm CG, Richardson JB, Reiser MF, McCall IW (2007) Quantitative 3D MR evaluation of autologous chondrocyte implantation in the knee: feasibility and initial results. Osteoarthr Cartil 15(7):798–807

    Article  Google Scholar 

  37. Gomoll AH, Filardo G, Almqvist FK, Bugbee WD, Jelic M, Monllau JC et al (2012) Surgical treatment for early osteoarthritis. Part II: allografts and concurrent procedures. Knee Surg Sports Traumatol Arthrosc 20(3):468–486

    Article  Google Scholar 

  38. Gomoll AH, Filardo G, de Girolamo L, Espregueira-Mendes J, Marcacci M, Rodkey WG et al (2012) Surgical treatment for early osteoarthritis. Part I: cartilage repair procedures. Knee Surg Sports Traumatol Arthrosc 20(3):450–466

    Article  Google Scholar 

  39. Goyal D, Goyal A, Keyhani S, Lee EH, Hui JH (2013) Evidence-based status of second- and third-generation autologous chondrocyte implantation over first generation: a systematic review of level I and II studies. Arthroscopy 29(11):1872–1878

    Article  Google Scholar 

  40. Goyal D, Keyhani S, Goyal A, Lee EH, Hui JH, Vaziri AS (2014) Evidence-based status of osteochondral cylinder transfer techniques: a systematic review of level I and II studies. Arthroscopy 30(4):497–505

    Article  Google Scholar 

  41. Goyal D, Keyhani S, Lee EH, Hui JH (2013) Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy 29(9):1579–1588

    Article  Google Scholar 

  42. Gudas R, Gudaite A, Mickevicius T, Masiulis N, Simonaityte R, Cekanauskas E et al (2013) Comparison of osteochondral autologous transplantation, microfracture, or debridement techniques in articular cartilage lesions associated with anterior cruciate ligament injury: a prospective study with a 3-year follow-up. Arthroscopy 29(1):89–97

    Article  Google Scholar 

  43. Gupta PK, Das AK, Chullikana A, Majumdar AS (2012) Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 3(4):25

    Article  Google Scholar 

  44. Haene R, Qamirani E, Story RA, Pinsker E, Daniels TR (2012) Intermediate outcomes of fresh talar osteochondral allografts for treatment of large osteochondral lesions of the talus. J Bone Joint Surg Am 94(12):1105–1110

    Article  Google Scholar 

  45. Hirose J, Nishioka H, Okamoto N, Oniki Y, Nakamura E, Yamashita Y et al (2013) Articular cartilage lesions increase early cartilage degeneration in knees treated by anterior cruciate ligament reconstruction: T1rho mapping evaluation and 1-year follow-up. Am J Sports Med 41(10):2353–2361

    Article  Google Scholar 

  46. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18(7):730–734

    Article  Google Scholar 

  47. Howell SM (2010) The role of arthroscopy in treating osteoarthritis of the knee in the older patient. Orthopedics 33(9):652

    Google Scholar 

  48. Huang Y, Zhang Y, Ding X, Liu S, Sun T (2014) Working conditions of bipolar radiofrequency on human articular cartilage repair following thermal injury during arthroscopy. Chin Med J 127(22):3881–3886

    Google Scholar 

  49. Hunt N, Sanchez-Ballester J, Pandit R, Thomas R, Strachan R (2001) Chondral lesions of the knee: a new localization method and correlation with associated pathology. Arthroscopy 17(5):481–490

    Article  Google Scholar 

  50. Hunziker EB (1999) Articular cartilage repair: Are the intrinsic biological constraints undermining this process insuperable? Osteoarthr Cartil 7(1):15–28

    Article  Google Scholar 

  51. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10(6):432–463

    Article  Google Scholar 

  52. Ibarra-Ponce de Leon JC, Cabrales-Pontigo M, Crisostomo-Martinez JF, Almazan-Diaz A, Cruz-Lopez F, Encalada-Diaz MI et al (2009) Results of arthroscopic debridement and lavage in patients with knee osteoarthritis. Acta Ortop Mex 23(2):85–89

    Google Scholar 

  53. Jackson DW, Simon TM, Aberman HM (2001) Symptomatic articular cartilage degeneration: the impact in the new millennium. Clin Orthop Relat Res 391(Suppl):S14–S25

    Article  Google Scholar 

  54. Johnson VL, Hunter DJ (2014) The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 28(1):5–15

    Article  Google Scholar 

  55. Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F et al (2013) Tissue engineering for articular cartilage repair–the state of the art. Eur Cell Mater 25:248–267

    Google Scholar 

  56. Katz JN, Brownlee SA, Jones MH (2014) The role of arthroscopy in the management of knee osteoarthritis. Best Pract Res Clin Rheumatol 28(1):143–156

    Article  Google Scholar 

  57. Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De SmetAA (2009) Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 250(3):839–848

    Article  Google Scholar 

  58. Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK (2013) Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 267(2):503–513

    Article  Google Scholar 

  59. Kock L, van Donkelaar CC, Ito K (2012) Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res 347(3):613–627

    Article  Google Scholar 

  60. Kreuz PC, Muller S, von Keudell A, Tischer T, Kaps C, Niemeyer P et al (2013) Influence of sex on the outcome of autologous chondrocyte implantation in chondral defects of the knee. Am J Sports Med 41(7):1541–1548

    Article  Google Scholar 

  61. Kuni B, Schmitt H, Chloridis D, Ludwig K (2012) Clinical and MRI results after microfracture of osteochondral lesions of the talus. Arch Orthop Trauma Surg 132(12):1765–1771

    Article  Google Scholar 

  62. Lazic S, Boughton O, Hing C, Bernard J (2014) Arthroscopic washout of the knee: a procedure in decline. Knee 21(2):631–634

    Article  Google Scholar 

  63. Lee GW, Son JH, Kim JD, Jung GH (2013) Is platelet-rich plasma able to enhance the results of arthroscopic microfracture in early osteoarthritis and cartilage lesion over 40 years of age? Eur J Orthop Surg Traumatol 23(5):581–587

    Article  Google Scholar 

  64. Lewandrowski KU, Muller J, Schollmeier G (1997) Concomitant meniscal and articular cartilage lesions in the femorotibial joint. Am J Sports Med 25(4):486–494

    Article  Google Scholar 

  65. Lim HC, Bae JH, Song SH, Park YE, Kim SJ (2012) Current treatments of isolated articular cartilage lesions of the knee achieve similar outcomes. Clin Orthop Relat Res 470(8):2261–2267

    Article  Google Scholar 

  66. Marcacci M, Filardo G, Kon E (2013) Treatment of cartilage lesions: What works and why? Injury 44(Suppl 1):S11–S15

    Article  Google Scholar 

  67. McAlindon TE, Snow S, Cooper C, Dieppe PA (1992) Radiographic patterns of osteoarthritis of the knee joint in the community: the importance of the patellofemoral joint. Ann Rheum Dis 51(7):844–849

    Article  Google Scholar 

  68. McCormick F, Harris JD, Abrams GD, Frank R, Gupta A, Hussey K et al (2014) Trends in the surgical treatment of articular cartilage lesions in the United States: an analysis of a large private-payer database over a period of 8 years. Arthroscopy 30(2):222–226

    Article  Google Scholar 

  69. Mezhov V, Ciccutini FM, Hanna FS, Brennan SL, Wang YY, Urquhart DM et al (2014) Does obesity affect knee cartilage? A systematic review of magnetic resonance imaging data. Obes Rev 15(2):143–157

    Article  Google Scholar 

  70. Mollon B, Kandel R, Chahal J, Theodoropoulos J (2013) The clinical status of cartilage tissue regeneration in humans. Osteoarthr Cartil 21(12):1824–1833

    Article  Google Scholar 

  71. Moseley JB, O’Malley K, Petersen NJ, Menke TJ, Brody BA, Kuykendall DH et al (2002) A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 347(2):81–88

    Article  Google Scholar 

  72. Negrin LL, Vecsei V (2013) Do meta-analyses reveal time-dependent differences between the clinical outcomes achieved by microfracture and autologous chondrocyte implantation in the treatment of cartilage defects of the knee? J Orthop Sci 18(6):940–948

    Article  Google Scholar 

  73. Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31(5):706–721

    Article  Google Scholar 

  74. Ollat D, Lebel B, Thaunat M, Jones D, Mainard L, Dubrana F et al (2011) Mosaic osteochondral transplantations in the knee joint, midterm results of the SFA multicenter study. Orthop Traumatol Surg Res 97(8 Suppl):S160–S166

    Article  Google Scholar 

  75. Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43-B:752–757

    Google Scholar 

  76. Peeters CM, Leijs MJ, Reijman M, van Osch GJ, Bos PK (2013) Safety of intra-articular cell-therapy with culture-expanded stem cells in humans: a systematic literature review. Osteoarthr Cartil 21(10):1465–1473

    Article  Google Scholar 

  77. Perera JR, Gikas PD, Bentley G (2012) The present state of treatments for articular cartilage defects in the knee. Ann R Coll Surg Engl 94(6):381–387

    Article  Google Scholar 

  78. Petri M, Broese M, Simon A, Liodakis E, Ettinger M, Guenther D et al (2013) CaReS (MACT) versus microfracture in treating symptomatic patellofemoral cartilage defects: a retrospective matched-pair analysis. J Orthop Sci 18(1):38–44

    Article  Google Scholar 

  79. Reed ME, Villacis DC, Hatch GF 3rd, Burke WS, Colletti PM, Narvy SJ et al (2013) 3.0-Tesla MRI and arthroscopy for assessment of knee articular cartilage lesions. Orthopedics 36(8):e1060–e1064

    Article  Google Scholar 

  80. Resnick D, Vint V (1980) The “Tunnel” view in assessment of cartilage loss in osteoarthritis of the knee. Radiology 137(2):547–548

    Article  Google Scholar 

  81. Reverte-Vinaixa MM, Joshi N, Diaz-Ferreiro EW, Teixidor-Serra J, Dominguez-Oronoz R (2013) Medium-term outcome of mosaicplasty for grade III–IV cartilage defects of the knee. J Orthop Surg 21(1):4–9

    Google Scholar 

  82. Robert H (2011) Chondral repair of the knee joint using mosaicplasty. Orthop Traumatol Surg Res 97(4):418–429

    Article  Google Scholar 

  83. Rodriguez-Merchan EC (2013) Regeneration of articular cartilage of the knee. Rheumatol Int 33(4):837–845

    Article  Google Scholar 

  84. Roelofs AJ, Rocke JP, De Bari C (2013) Cell-based approaches to joint surface repair: a research perspective. Osteoarthr Cartil 21(7):892–900

    Article  Google Scholar 

  85. Rogers AD, Payne JE, Yu JS (2013) Cartilage imaging: a review of current concepts and emerging technologies. Semin Roentgenol 48(2):148–157

    Article  Google Scholar 

  86. Rosenberg TD, Paulos LE, Parker RD, Coward DB, Scott SM (1988) The forty-five-degree posteroanterior flexion weight-bearing radiograph of the knee. J Bone Joint Surg Am 70(10):1479–1483

    Google Scholar 

  87. Schuttler KF, Schenker H, Theisen C, Schofer MD, Getgood A, Roessler PP et al (2014) Use of cell-free collagen type I matrix implants for the treatment of small cartilage defects in the knee: clinical and magnetic resonance imaging evaluation. Knee Surg Sports Traumatol Arthrosc 22(6):1270–1276

    Article  Google Scholar 

  88. Sharma L, Chmiel JS, Almagor O, Dunlop D, Guermazi A, Bathon JM et al (2014) Significance of preradiographic magnetic resonance imaging lesions in persons at increased risk of knee osteoarthritis. Arthritis Rheumatol 66(7):1811–1819

    Article  Google Scholar 

  89. Solheim E, Hegna J, Oyen J, Harlem T, Strand T (2013) Results at 10 to 14 years after osteochondral autografting (mosaicplasty) in articular cartilage defects in the knee. Knee 20(4):287–290

    Article  Google Scholar 

  90. Stahl R, Krug R, Kelley DA, Zuo J, Ma CB, Majumdar S et al (2009) Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint. Skelet Radiol 38(8):771–783

    Article  Google Scholar 

  91. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19(5):477–484

    Article  Google Scholar 

  92. Takazawa K, Adachi N, Deie M, Kamei G, Uchio Y, Iwasa J et al (2012) Evaluation of magnetic resonance imaging and clinical outcome after tissue-engineered cartilage implantation: prospective 6-year follow-up study. J Orthop Sci 17(4):413–424

    Article  Google Scholar 

  93. Tuan RS, Chen AF, Klatt BA (2013) Cartilage regeneration. J Am Acad Orthop Surg 21(5):303–311

    Google Scholar 

  94. Turker M, Cetik O, Cirpar M, Durusoy S, Comert B (2015) Postarthroscopy osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc 23(1):246–250

    Article  Google Scholar 

  95. Ulstein S, Aroen A, Rotterud JH, Loken S, Engebretsen L, Heir S (2014) Microfracture technique versus osteochondral autologous transplantation mosaicplasty in patients with articular chondral lesions of the knee: a prospective randomized trial with long-term follow-up. Knee Surg Sports Traumatol Arthrosc 22(6):1207–1215

    Article  Google Scholar 

  96. Vaquero J, Forriol F (2012) Knee chondral injuries: clinical treatment strategies and experimental models. Injury 43(6):694–705

    Article  Google Scholar 

  97. Versier G, Dubrana F (2011) Treatment of knee cartilage defect in 2010. Orthop Traumatol Surg Res 97(8 Suppl):S140–S153

    Article  Google Scholar 

  98. von Engelhardt LV, Kraft CN, Pennekamp PH, Schild HH, Schmitz A, von Falkenhausen M (2007) The evaluation of articular cartilage lesions of the knee with a 3-T magnet. Arthroscopy 23(5):496–502

    Article  Google Scholar 

  99. von Engelhardt LV, Schmitz A, Burian B, Pennekamp PH, Schild HH, Kraft CN et al (2008) 3-T MRI vs. arthroscopy for diagnostics of degenerative knee cartilage diseases: preliminary clinical results. Orthopade 37(9):914

    Article  Google Scholar 

  100. Wakitani S, Okabe T, Horibe S, Mitsuoka T, Saito M, Koyama T et al (2011) Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med 5(2):146–150

    Article  Google Scholar 

  101. Wirth W, Duryea J, Hellio Le Graverand MP, John MR, Nevitt M, Buck RJ et al (2013) Direct comparison of fixed flexion, radiography and MRI in knee osteoarthritis: responsiveness data from the Osteoarthritis Initiative. Osteoarthr Cartil 21(1):117–125

    Article  Google Scholar 

  102. Wong S, Steinbach L, Zhao J, Stehling C, Ma CB, Link TM (2009) Comparative study of imaging at 3.0 T versus 1.5 T of the knee. Skelet Radiol 38(8):761–769

    Article  Google Scholar 

  103. Yan Z, Yang L, Guo L, Wang F (2014) Effectiveness of arthroscopic bipolar radiofrequency energy for lateral meniscus tear and cartilage injury. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 28(1):13–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Vilela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vilela, C.A., Correia, C., Oliveira, J.M., Sousa, R.A., Reis, R.L., Espregueira-Mendes, J. (2017). Clinical Management of Articular Cartilage Lesions. In: Oliveira, J., Reis, R. (eds) Regenerative Strategies for the Treatment of Knee Joint Disabilities. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-44785-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44785-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44783-4

  • Online ISBN: 978-3-319-44785-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics