Skip to main content

Biomaterials as Tendon and Ligament Substitutes: Current Developments

  • Chapter
  • First Online:
Regenerative Strategies for the Treatment of Knee Joint Disabilities

Abstract

Tendon and ligament have specialized dynamic microenvironment characterized by a complex hierarchical extracellular matrix essential for tissue functionality, and responsible to be an instructive niche for resident cells. Among musculoskeletal diseases, tendon/ligament injuries often result in pain, substantial tissue morbidity, and disability, affecting athletes, active working people and elder population. This represents not only a major healthcare problem but it implies considerable social and economic hurdles. Current treatments are based on the replacement and/or augmentation of the damaged tissue with severe associated limitations. Thus, it is evident the clinical challenge and emergent need to recreate native tissue features and regenerate damaged tissues. In this context, the design and development of anisotropic bioengineered systems with potential to recapitulate the hierarchical architecture and organization of tendons and ligaments from nano to macro scale will be discussed in this chapter. Special attention will be given to the state-of-the-art fabrication techniques, namely spinning and electrochemical alignment techniques to address the demanding requirements for tendon substitutes, particularly concerning the importance of biomechanical and structural cues of these tissues. Moreover, the poor innate regeneration ability related to the low cellularity and vascularization of tendons and ligaments also anticipates the importance of cell based strategies, particularly on the stem cells role for the success of tissue engineered therapies. In summary, this chapter provides a general overview on tendon and ligaments physiology and current conventional treatments for injuries caused by trauma and/or disease. Moreover, this chapter presents tissue engineering approaches as an alternative to overcome the limitations of current therapies, focusing on the discussion about scaffolds design for tissue substitutes to meet the regenerative medicine challenges towards the functional restoration of damaged or degenerated tendon and ligament tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank CB (2004) Ligament structure, physiology and function. J Musculoskelet Neuronal Interact 4(2):199–201

    Google Scholar 

  2. Weintraub W (2003) The nature of tendons and ligaments. In Tendon and ligament healing: a new approach to sports and overuse injury. P. Publications, pp 5–24

    Google Scholar 

  3. Thorpe CT et al (2015) Chapter 1—Tendon physiology and mechanical behavior: structure–function relationships. In: Gomes ME, Reis RL, Rodrigues MT (eds) Tendon regeneration. Academic Press, Boston, pp 3–39

    Chapter  Google Scholar 

  4. Woo SL-Y et al (2007) Chapter 9—Functional tissue engineering of ligament and tendon injuries. In: Mao JJ et al (eds) Transitional approaches in tissue engineering and regenerative medicine. Artech House Publishers, Norwood

    Google Scholar 

  5. Hsu S-L, Liang R, Woo SL (2010) Functional tissue engineering of ligament healing. BMC Sports Science, Medicine and Rehabilitation, pp 2–12

    Google Scholar 

  6. Costa-Almeida R et al (2015) Tendon stem cell niche. In: Turksen K (ed) Tissue engineering and stem cell niche. Springer, Berlin, pp 221–244

    Chapter  Google Scholar 

  7. Wang JHC (2006) Mechanobiology of tendon. J Biomech 39(9):1563–1582

    Article  Google Scholar 

  8. Andrades JA et al (2011) Chapter 5—Skeletal regeneration by mesenchymal stem cells: what else? In: Eberli D (ed) Regenerative medicine and tissue engineering—cells and biomaterials. InTech, Morn Hill

    Google Scholar 

  9. Ghosh KM, Deehan DJ (2010) Soft tissue knee injuries. Surg Oxf Int Ed 28(10):494–501

    Google Scholar 

  10. Cowin SC, Doty SB (2007) The constituents of tendons and ligaments. In: Cowin SC, Doty SB (eds) Tissue mechanics. Springer, New York, p 562

    Chapter  Google Scholar 

  11. Sharma P, Maffulli N (2006) Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact 6(2):181–190

    Google Scholar 

  12. Riggin CN, Morris TR, Soslowsky LJ (2015) Chapter 5—Tendinopathy II: etiology, pathology, and healing of tendon injury and disease. In: Gomes ME, Reis RL, Rodrigues MT (eds) Tendon regeneration. Academic Press, Boston, pp 149–183

    Chapter  Google Scholar 

  13. Ackermann PW (2015) Chapter 4—Tendinopathy I: understanding epidemiology, pathology, healing, and treatment. In: Gomes ME, Reis RL, Rodrigues MT (eds) Tendon regeneration. Academic Press, Boston, pp 113–147

    Chapter  Google Scholar 

  14. Rodrigues MT, Reis RL, Gomes ME (2013) Engineering tendon and ligament tissues: present developments towards successful clinical products. J Tissue Eng Regen Med 7(9):673–686

    Article  Google Scholar 

  15. Siegel L, Vandenakker-Albanese C, Siegel D (2012) Anterior cruciate ligament injuries: anatomy, physiology, biomechanics, and management. Clin J Sport Med 22(4):349–355

    Article  Google Scholar 

  16. Kiapour AM, Murray MM (2014) Basic science of anterior cruciate ligament injury and repair. Bone Joint Res 3(2):20–31

    Article  Google Scholar 

  17. Mascarenhas R et al (2012) Bone-patellar tendon-bone autograft versus hamstring autograft anterior cruciate ligament reconstruction in the young athlete: a retrospective matched analysis with 2–10 year follow-up. Knee Surg Sports Traumatol Arthrosc 20:1520–1527

    Article  Google Scholar 

  18. Øiestad BE, Holm I, Engebretsen L, Aune AK, Gunderson R, Risberg MA (2013) The prevalence of patellofemoral osteoarthritis 12 years after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21(4):942–949

    Article  Google Scholar 

  19. Liu Z-T et al (2010) Four-strand hamstring tendon autograft versus LARS artificial ligament for anterior cruciate ligament reconstruction. Int Orthop 34(1):45–49

    Article  Google Scholar 

  20. Batty LM et al (2015) Synthetic devices for reconstructive surgery of the cruciate ligaments: a systematic review. Arthroscopy 31(5):957–968

    Article  Google Scholar 

  21. Tiefenboeck TM et al (2015) Clinical and functional outcome after anterior cruciate ligament reconstruction using the LARS™ system at a minimum follow-up of 10 years. Knee 22(6):565–568

    Article  Google Scholar 

  22. Chen J et al (2009) Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev Med Devices 6(1):61–73

    Article  Google Scholar 

  23. Yannas IV (2001) Tissue and organ regeneration in adults. Springer, New York

    Google Scholar 

  24. Czaplewski SK et al (2014) Tenogenic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells dictated by properties of braided submicron fibrous scaffolds. Biomaterials 35(25):6907–6917

    Article  Google Scholar 

  25. Steinert AF et al (2011) Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells. Tissue Eng Part A 17(9–10):1375–1388

    Article  Google Scholar 

  26. Bi Y et al (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13(10):1219–1227

    Article  Google Scholar 

  27. Chen X et al (2009) Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. Stem Cells 27(6):1276–1287

    Article  Google Scholar 

  28. Xu W et al (2013) Human iPSC-derived neural crest stem cells promote tendon repair in a rat patellar tendon window defect model. Tissue Eng Part A 19(21–22):2439–2451

    Article  Google Scholar 

  29. Otabe K et al (2015) The transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J Orthop Res 33(1):1–8

    Article  Google Scholar 

  30. Tan S-L et al (2015) Identification of pathways mediating growth differentiation factor5-induced tenogenic differentiation in human bone marrow stromal cells. PLoS ONE 10(11):e0140869

    Article  Google Scholar 

  31. Urdzikova LM, Sedlacek R, Suchy T, Amemori T, Ruzicka J, Lesny P, Havlas V, Jendelova P (2014) Human multipotent mesenchymal stem cells improve healing after collagenase tendon injury in the rat. Biomed Eng Online 13(42). doi:10.1186/1475-925X-13-42, http://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-13-42

  32. Gonçalves AI et al (2014) Understanding the role of growth factors in modulating stem cell tenogenesis. PLoS ONE 8(12):e83734

    Article  Google Scholar 

  33. de Mattos Carvalho A et al (2011) Use of adipose tissue-derived mesenchymal stem cells for experimental tendinitis therapy in equines. J Equine Vet Sci 31(1):26–34

    Article  Google Scholar 

  34. Molloy T, Wang Y, Murrell GAC (2003) The roles of growth factors in tendon and ligament healing. Sports Med 33(5):381–394

    Article  Google Scholar 

  35. Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    Article  Google Scholar 

  36. Rizzello G et al (2012) Growth factors and stem cells for the management of anterior cruciate ligament tears. Open Orthop J 6:525–530

    Article  Google Scholar 

  37. Klein MB et al (2002) Flexor tendon healing in vitro: effects of TGF-β on tendon cell collagen production. J Hand Surg 27(4):615–620

    Article  Google Scholar 

  38. Chan BP et al (2000) Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. Acta Orthop Scand 71(5):513–518

    Article  Google Scholar 

  39. Sahoo S, Toh SL, Goh JCH (2010) A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials 31(11):2990–2998

    Article  Google Scholar 

  40. Murray MM et al (2007) Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. J Orthop Res 25(8):1007–1017

    Article  Google Scholar 

  41. Murray M et al (2006) Use of a collagen-platelet rich plasma scaffold to stimulate healing of a central defect in the canine ACL. J Orthop Res 24(4):820–830

    Article  Google Scholar 

  42. Ricchetti ET et al (2012) Scaffold devices for rotator cuff repair. J Shoulder Elbow Surg 21(2):251–265

    Article  Google Scholar 

  43. Dunn MG et al (1995) Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res 29(11):1363–1371

    Article  Google Scholar 

  44. Bellincampi LD et al (1998) Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res 16(4):414–420

    Article  Google Scholar 

  45. Weadock K et al (1995) Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res 29(11):1373–1379

    Article  Google Scholar 

  46. Gurkan UA et al (2010) Comparison of morphology, orientation, and migration of tendon derived fibroblasts and bone marrow stromal cells on electrochemically aligned collagen constructs. J Biomed Mater Res, Part A 94A(4):1070–1079

    Google Scholar 

  47. Altman GH et al (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    Article  Google Scholar 

  48. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32(8–9):991–1007

    Article  Google Scholar 

  49. Chen JL et al (2010) Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles. Biomaterials 31(36):9438–9451

    Article  Google Scholar 

  50. Chen X et al (2014) Scleraxis-overexpressed human embryonic stem cell-derived mesenchymal stem cells for tendon tissue engineering with knitted silk-collagen scaffold. Tissue Eng Part A 20(11–12):1583–1592

    Article  Google Scholar 

  51. Chen J et al (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res, Part A 67(2):559–570

    Article  Google Scholar 

  52. Majima T et al (2007) Chitosan-based hyaluronan hybrid polymer fibre scaffold for ligament and tendon tissue engineering. Proc Inst Mech Eng Part H 221(5):537–546

    Article  Google Scholar 

  53. Moffat KL et al (2009) Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng Part A 15(1):115–126

    Article  MathSciNet  Google Scholar 

  54. Fan H et al (2009) Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials 30(28):4967–4977

    Article  Google Scholar 

  55. Laitinen O et al (1992) Mechanical properties of biodegradable ligament augmentation device of poly(l-lactide) in vitro and in vivo. Biomaterials 13(14):1012–1016

    Article  Google Scholar 

  56. Cooper JA et al (2007) Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci USA 104(9):3049–3054

    Article  Google Scholar 

  57. Freeman JW, Woods MD, Laurencin CT (2007) Tissue engineering of the anterior cruciate ligament using a braid-twist scaffold design. J Biomech 40(9):2029–2036

    Article  Google Scholar 

  58. Petrigliano FA et al (2007) The effects of local bFGF release and uniaxial strain on cellular adaptation and gene expression in a 3D environment: implications for ligament tissue engineering. Tissue Eng 13(11):2721–2731

    Article  Google Scholar 

  59. Leong NL et al (2015) Evaluation of polycaprolactone Scaffold with basic fibroblast growth factor and fibroblasts in an athymic rat model for anterior cruciate ligament reconstruction. Tissue Eng Part A 21(11–12):1859–1868

    Article  Google Scholar 

  60. Xu Y et al (2013) Fabrication of electrospun poly(l-lactide-co-ε-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering. Tissue Eng Part C Methods 19(12):925–936

    Article  Google Scholar 

  61. Xu Y et al (2014) The effect of mechanical stimulation on the maturation of TDSCs-poly(l-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering. Biomaterials 35(9):2760–2772

    Article  Google Scholar 

  62. Leung M et al (2013) Tenogenic differentiation of human bone marrow stem cells via a combinatory effect of aligned chitosan-poly-caprolactone nanofibers and TGF-[small beta]3. J Mater Chem B 1(47):6516–6524

    Article  Google Scholar 

  63. Domingues RMA et al (2016) Enhancing the biomechanical performance of anisotropic nanofibrous scaffolds in tendon tissue engineering: reinforcement with cellulose nanocrystals. Adv Healthc Mater. doi:10.1002/adhm.201501048

    Google Scholar 

  64. Wang L et al (2015) Nanofiber yarn/hydrogel core-shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano 9(9):9167–9179

    Article  Google Scholar 

  65. Shuakat MN, Lin T (2014) Recent developments in electrospinning of nanofiber yarns. J Nanosci Nanotechnol 14(2):1389–1408

    Article  Google Scholar 

  66. Zhang C et al (2015) Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials 53:716–730

    Article  Google Scholar 

  67. Younesi M et al (2014) Tenogenic induction of human MSCs by anisotropically aligned collagen biotextiles. Adv Funct Mater 24(36):5762–5770

    Article  Google Scholar 

  68. Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15(7):2327–2346

    Article  Google Scholar 

  69. Nivison-Smith L, Weiss AS (2012) Alignment of human vascular smooth muscle cells on parallel electrospun synthetic elastin fibers. J Biomed Mater Res, Part A 100A(1):155–161

    Article  Google Scholar 

  70. Spanoudes K et al (2014) The biophysical, biochemical, and biological toolbox for tenogenic phenotype maintenance in vitro. Trends Biotechnol 32(9):474–482

    Article  Google Scholar 

  71. Yin Z et al (2010) The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials 31(8):2163–2175

    Article  Google Scholar 

  72. Zhou C et al (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5(9):3847–3854

    Article  Google Scholar 

  73. Abbah SA, Spanoudes K, O’Brien T, Pandit A, Zeugolis DI (2014) Assessment of stem cell carriers for tendon tissue engineering in pre-clinical models. Stem Cell Res Ther 5(38). doi:10.1186/scrt426, http://stemcellres.biomedcentral.com/articles/10.1186/scrt426

  74. Barber JG et al (2011) Braided nanofibrous scaffold for tendon and ligament tissue engineering. Tissue Eng Part A 19(11–12):1265–1274

    MathSciNet  Google Scholar 

  75. Liu W et al (2015) Generation of electrospun nanofibers with controllable degrees of crimping through a simple, plasticizer-based treatment. Adv Mater 27(16):2583–2588

    Article  Google Scholar 

  76. Surrao DC et al (2012) A crimp-like microarchitecture improves tissue production in fibrous ligament scaffolds in response to mechanical stimuli. Acta Biomater 8(10):3704–3713

    Article  Google Scholar 

  77. Chen F, Hayami JWS, Amsden BG (2014) Electrospun poly(l-lactide-co-acryloyl carbonate) fiber scaffolds with a mechanically stable crimp structure for ligament tissue engineering. Biomacromolecules 15(5):1593–1601

    Article  Google Scholar 

  78. Lomas AJ et al (2015) The past, present and future in scaffold-based tendon treatments. Adv Drug Deliv Rev 85:257–277

    Article  Google Scholar 

  79. LaCroix AS et al (2013) Relationship between tendon stiffness and failure: a metaanalysis. J Appl Physiol 115(1):43–51

    Article  MathSciNet  Google Scholar 

  80. Domingues RMA et al (2015) Chapter 10—Fabrication of hierarchical and biomimetic fibrous structures to support the regeneration of tendon tissues. In: Gomes ME, Reis RL, Rodrigues MT (eds) Tendon regeneration. Academic Press, Boston, pp 259–280

    Chapter  Google Scholar 

  81. Pauly HM et al (2016) Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: effects of orientation and geometry. J Mech Behav Biomed Mater 61:258–270

    Article  Google Scholar 

  82. Bosworth LA et al (2013) Investigation of 2D and 3D electrospun scaffolds intended for tendon repair. J Mater Sci - Mater Med 24(6):1605–1614

    Article  Google Scholar 

  83. Mouthuy P-A et al (2015) Fabrication of continuous electrospun filaments with potential for use as medical fibres. Biofabrication 7(2):025006

    Article  Google Scholar 

  84. Yang G et al (2016) Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering. Acta Biomater 35:68–76

    Article  Google Scholar 

  85. Aibibu D et al (2016) Textile cell-free scaffolds for in situ tissue engineering applications. J Mater Sci - Mater Med 27:63

    Article  Google Scholar 

  86. Cheng X et al (2008) An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles. Biomaterials 29(22):3278–3288

    Article  Google Scholar 

  87. Uquillas JA, Kishore V, Akkus A (2011) Effects of phosphate-buffered saline concentration and incubation time on the mechanical and structural properties of electrochemically aligned collagen threads. Biomed Mater 6(3):035008

    Article  Google Scholar 

  88. Uquillas JA, Kishore V, Akkus O (2012) Genipin crosslinking elevates the strength of electrochemically aligned collagen to the level of tendons. J Mech Behav Biomed Mater 15:176–189

    Article  Google Scholar 

  89. Kishore V et al (2011) Incorporation of a decorin biomimetic enhances the mechanical properties of electrochemically aligned collagen threads. Acta Biomater 7(6):2428–2436

    Article  Google Scholar 

  90. Kishore V et al (2012) Tenogenic differentiation of human MSCs induced by the topography of electrochemically aligned collagen threads. Biomaterials 33(7):2137–2144

    Article  Google Scholar 

  91. Kishore V et al (2012) In vivo response to electrochemically aligned collagen bioscaffolds. J Biomed Mater Res B Appl Biomater 100B(2):400–408

    Article  Google Scholar 

  92. Islam A et al (2015) Biomechanical evaluation of a novel suturing scheme for grafting load-bearing collagen scaffolds for rotator cuff repair. Clin Biomech 30(7):669–675

    Article  Google Scholar 

  93. Cheng CW, Solorio LD, Alsberg E (2014) Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv 32(2):462–484

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the Portuguese Foundation for Science and Technology for the post-doctoral grant (SFRH/BPD/111729/2015) and for the projects Recognize (UTAP-ICDT/CTM-BIO/0023/2014) and POCI-01-0145-FEDER-007038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela E. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Santos, M.L., Rodrigues, M.T., Domingues, R.M.A., Reis, R.L., Gomes, M.E. (2017). Biomaterials as Tendon and Ligament Substitutes: Current Developments. In: Oliveira, J., Reis, R. (eds) Regenerative Strategies for the Treatment of Knee Joint Disabilities. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-44785-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44785-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44783-4

  • Online ISBN: 978-3-319-44785-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics