Skip to main content

Osteochondral Tissue Engineering and Regenerative Strategies

  • Chapter
  • First Online:
Regenerative Strategies for the Treatment of Knee Joint Disabilities

Abstract

The orthopedic field has been facing challenging difficulties when it comes to regeneration of large and/or complex defects as we come across in osteochondral (OC) cases of lesions grade 4. Autologous OC mosaicplasty has proven to be a valid therapeutic option but donor site morbidity and the lack of long-term functionality remain sources of concern. OC tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. The use of two scaffolds with optimized properties for bone and cartilage architectures combined at the time of implantation as a multilayered structure was one of the first approaches for OC large defects regeneration. Last decade strategies using a bony-like scaffold supporting a cell layer for cartilage phase were introduced. Beyond the approaches already mentioned, three other strategies were reported for OCD regeneration. One methodology was the use of two different layers with a compact interface to create an integrated bilayered scaffold before cell seeding. A second strategy was the use of a single continuous structure but with different features in each layer. The last one was the combination of hydrogel phases creating this way the possibility to have injectable systems. These promising strategies for the regeneration of complex OCDs comprise the use of different biomaterials, growth factors, and cells alone or in combination, but the ideal solution is still to be found. The interface’s mechanical properties have to be optimized. A different problem is related with the cell culture method within the 3D bilayered structures with heterogeneous properties. With the increasing demand of these stratified 3D structures new cell culture systems are required. Moreover these structures present the potential to be used as in vitro models, which is a need also because of the pressure resulting from the 3R’s principle implementation that is now occurring. Regarding this, adapted bioreactors are being developed, but more efforts are required to target this scientific demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6):461–468. doi:10.1177/1941738109350438

    Article  Google Scholar 

  2. Martin JA, Buckwalter JA (2001) Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop J 21:1–7

    Google Scholar 

  3. Bhosale AM, Richardson JB (2008) Articular cartilage: structure, injuries and review of management. Br Med Bull 87(1):77–95. doi:10.1093/bmb/ldn025

    Article  Google Scholar 

  4. Kleemann RU, Krocker D, Cedraro A, Tuischer J, Duda GN (2005) Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade). Osteoarthr Cartil 13(11):958–963. doi:10.1016/j.joca.2005.06.008

    Article  Google Scholar 

  5. Thomas CM, Fuller CJ, Whittles CE, Sharif M (2007) Chondrocyte death by apoptosis is associated with cartilage matrix degradation. Osteoarthr Cartil 15(1):27–34. doi:10.1016/j.joca.2006.06.012

    Article  Google Scholar 

  6. Peterson L, Minas T, Brittberg M, Lindahl A (2003) Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation, vol 85. Results at two to ten years. vol suppl 2

    Google Scholar 

  7. Steinwachs MR, Guggi T, Kreuz PC (2008) Marrow stimulation techniques. Injury 39(1, Supplement):26–31

    Article  Google Scholar 

  8. Langer R, Vacanti J (1993) Tissue engineering. Science 260(5110):920–926. doi:10.1126/science.8493529

    Article  Google Scholar 

  9. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347. doi:10.1002/jcp.21200

    Article  MathSciNet  Google Scholar 

  10. Zhao Q, Ren H, Han Z (2016) Mesenchymal stem cells: immunomodulatory capability and clinical potential in immune diseases. J Cell Immunother. doi:10.1016/j.jocit.2014.12.001

    Google Scholar 

  11. Mahmoudifar N, Doran PM (2013) Osteogenic differentiation and osteochondral tissue engineering using human adipose-derived stem cells. Biotechnol Prog 29(1):176–185. doi:10.1002/btpr.1663

    Article  Google Scholar 

  12. Li WJ, Cooper JA, Mauck RL, Tuan RS (2006) Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2(4):377–385. doi:10.1016/j.actbio.2006.02.005

    Article  Google Scholar 

  13. Shor L, Guceri S, Wen XJ, Gandhi M, Sun W (2007) Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28(35):5291–5297. doi:10.1016/j.biomaterials.2007.08.018

    Article  Google Scholar 

  14. Levingstone TJ, Matsiko A, Dickson GR, O’Brien FJ, Gleeson JP (2014) A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater 10(5):1996–2004. doi:10.1016/j.actbio.2014.01.005

    Article  Google Scholar 

  15. Zhou JA, Xu CX, Wu G, Cao XD, Zhang LM, Zhai ZC, Zheng ZW, Chen XF, Wang YJ (2011) In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Acta Biomater 7(11):3999–4006. doi:10.1016/j.actbio.2011.06.040

    Article  Google Scholar 

  16. Galperin A, Oldinski RA, Florczyk SJ, Bryers JD, Zhang MQ, Ratner BD (2013) Integrated bi-layered scaffold for osteochondral tissue engineering. Adv Healthc Mater 2(6):872–883. doi:10.1002/adhm.201200345

    Article  Google Scholar 

  17. Antunes JC, Oliveira JM, Reis RL, Soria JM, Gómez-Ribelles JL, Mano JF (2010) Novel poly(l-lactic acid)/hyaluronic acid macroporous hybrid scaffolds: characterization and assessment of cytotoxicity. J Biomed Mater Res, Part A 94A(3):856–869. doi:10.1002/jbm.a.32753

    Google Scholar 

  18. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27:6123–6137

    Article  Google Scholar 

  19. Lien SM, Chien CH, Huang TJ (2009) A novel osteochondral scaffold of ceramic-gelatin assembly for articular cartilage repair. Mater Sci Eng C Biomim Supramol Syst 29(1):315–321. doi:10.1016/j.msec.2008.07.017

    Article  Google Scholar 

  20. Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, Wang R, Guo T, Zhao J, Zhang J (2011) Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32(21):4793–4805. doi:10.1016/j.biomaterials.2011.03.041

    Article  Google Scholar 

  21. Sidney LE, Heathman TRJ, Britchford ER, Abed A, Rahman CV, Buttery LDK (2015) Investigation of localized delivery of diclofenac sodium from Poly(d,l-lactic acid-co-glycolic acid)/poly(ethylene glycol) scaffolds using an in vitro osteoblast inflammation model. Tissue Eng Part A 21(1–2):362–373. doi:10.1089/ten.tea.2014.0100

    Article  Google Scholar 

  22. Schumann D, Ekaputra AK, Lam CXF, Hutmacher DW (2007) Biomaterials/scaffolds. Design of bioactive, multiphasic PCL/collagen type I and type II-PCL-TCP/collagen composite scaffolds for functional tissue engineering of osteochondral repair tissue by using electrospinning and FDM techniques. Methods Mol Med 140:101–124

    Article  Google Scholar 

  23. Wu Y, Zhu SA, Wu CT, Lu P, Hu CC, Xiong S, Chang J, Heng BC, Xiao Y, Ouyang HW (2014) A bi-lineage conducive scaffold for osteochondral defect regeneration. Adv Funct Mater 24(28):4473–4483

    Article  Google Scholar 

  24. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137. doi:10.1016/j.biomaterials.2006.07.034

    Article  Google Scholar 

  25. Mellor LF, Mohiti-Asli M, Williams J, Kannan A, Dent MR, Guilak F, Loboa EG (2015) Extracellular calcium modulates chondrogenic and osteogenic differentiation of human adipose-derived stem cells: a novel approach for osteochondral tissue engineering using a single stem cell source. Tissue Eng Part A 21(17–18):2323–2333. doi:10.1089/ten.tea.2014.0572

    Article  Google Scholar 

  26. Malafaya PB, Pedro AJ, Peterbauer A, Gabriel C, Redl H, Reis RL (2006) Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J Mater Sci Mater Med 17(7):675. doi:10.1007/s10856-006-9231-9

    Article  Google Scholar 

  27. Yan LP, Silva-Correia J, Oliveira MB, Vilela C, Pereira H, Sousa RA, Mano JF, Oliveira AL, Oliveira JM, Reis RL (2015) Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance. Acta Biomater 12:227–241. doi:10.1016/j.actbio.2014.10.021

    Article  Google Scholar 

  28. Schaefer D, Martin I, Shastri P, Padera RF, Langer R, Freed LE, Vunjak-Novakovic G (2000) In vitro generation of osteochondral composites. Biomaterials 21(24):2599–2606

    Article  Google Scholar 

  29. Cui WD, Wang Q, Chen G, Zhou SX, Chang Q, Zuo Q, Ren KW, Fan WM (2011) Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs. J Biosci Bioeng 111(4):493–500. doi:10.1016/j.jbiosc.2010.11.023

    Article  Google Scholar 

  30. Kandel RA, Grynpas M, Pilliar R, Lee J, Wang J, Waldman S, Zalzal P, Hurtig M (2006) Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a Sheep model. Biomaterials 27(22):4120–4131. doi:10.1016/j.biomaterials.2006.03.005

    Article  Google Scholar 

  31. Shimomura K, Moriguchi Y, Ando W, Nansai R, Fujie H, Hart DA, Gobbi A, Kita K, Horibe S, Shino K, Yoshikawa H, Nakamura N (2014) Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Tissue Eng Part A 20(17–18):2291–2304

    Article  Google Scholar 

  32. Wang X, Grogan SP, Rieser F, Winkelmann V, Maquet V, Berge ML, Mainil-Varlet P (2004) Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study. Biomaterials 25(17):3681–3688. doi:10.1016/j.biomaterials.2003.10.102

    Article  Google Scholar 

  33. Ghosh S, Viana JC, Reis RL, Mano JF (2008) Bi-layered constructs based on poly(l-lactic acid) and starch for tissue engineering of osteochondral defects. Mater Sci Eng C Biomim Supramol Syst 28(1):80–86. doi:10.1016/j.msec.2006.12.012

    Article  Google Scholar 

  34. Lien S-M, Chien C-H, Huang T-J (2009) A novel osteochondral scaffold of ceramic–gelatin assembly for articular cartilage repair. Mater Sci Eng, C 29(1):315–321

    Article  Google Scholar 

  35. Aydin HM (2011) A three-layered osteochondral plug: structural, mechanical, and in vitro biocompatibility analysis. Adv Eng Mater 13(12):B511–B517. doi:10.1002/adem.201180005

    Article  Google Scholar 

  36. Ding X, Zhu M, Xu B, Zhang J, Zhao Y, Ji S, Wang L, Wang L, Li X, Kong D, Ma X, Yang Q (2014) Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells. ACS Appl Mater Interfaces 6(19):16696–16705. doi:10.1021/am5036708

    Article  Google Scholar 

  37. Da H, Jia S-J, Meng G-L, Cheng J-H, Zhou W, Xiong Z, Mu Y-J, Liu J (2013) The impact of compact layer in biphasic scaffold on osteochondral tissue engineering. PLoS ONE 8(1):e54838. doi:10.1371/journal.pone.0054838

    Article  Google Scholar 

  38. Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751. doi:10.1016/S0142-9612(02)00223-5

    Article  Google Scholar 

  39. Jiang J, Tang A, Ateshian G, Guo XE, Hung C, Lu H (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38(6):2183–2196. doi:10.1007/s10439-010-0038-y

    Article  Google Scholar 

  40. Deng T, Lv J, Pang J, Liu B, Ke J (2014) Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med 8(7):546–556. doi:10.1002/term.1556

    Google Scholar 

  41. Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS (2011) Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng Part A 17(21–22):2845–2855. doi:10.1089/ten.tea.2011.0135

    Article  Google Scholar 

  42. Liu XD, Liu S, Liu SH, Cui WG (2014) Evaluation of oriented electrospun fibers for periosteal flap regeneration in biomimetic triphasic osteochondral implant. J Biomed Mater Res, Part B 102(7):1407–1414. doi:10.1002/jbm.b.33119

    Article  Google Scholar 

  43. H-w Cheng, Luk KDK, Cheung KMC, Chan BP (2011) In vitro generation of an osteochondral interface from mesenchymal stem cell–collagen microspheres. Biomaterials 32(6):1526–1535

    Article  Google Scholar 

  44. Erisken C, Kalyon DM, Wang H (2010) Viscoelastic and biomechanical properties of osteochondral tissue constructs generated from graded polycaprolactone and beta-tricalcium phosphate composites. J Biomech Eng 132(9):091013. doi:10.1115/1.4001884

    Article  Google Scholar 

  45. Amadori S, Torricelli P, Panzavolta S, Parrilli A, Fini M, Bigi A (2015) Multi-layered scaffolds for osteochondral tissue engineering: in vitro response of co-cultured human mesenchymal stem cells. Macromol Biosci 15(11):1535–1545. doi:10.1002/mabi.201500165

  46. Yunos DM, Ahmad Z, Boccaccini AR (2010) Fabrication and characterization of electrospun poly-dl-lactide (PDLLA) fibrous coatings on 45S5 Bioglass (R) substrates for bone tissue engineering applications. J Chem Technol Biotechnol 85(6):768–774. doi:10.1002/jctb.2283

    Article  Google Scholar 

  47. Ju Young P, Jong-Cheol C, Jin-Hyung S, Jung-Seob L, Hyoungjun P, Sung Won K, Junsang D, Dong-Woo C (2014) A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication 6(3):035004

    Article  Google Scholar 

  48. Mazaki T, Shiozaki Y, Yamane K, Yoshida A, Nakamura M, Yoshida Y, Zhou D, Kitajima T, Tanaka M, Ito Y, Ozaki T, Matsukawa A (2014) A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci Rep 4:4457. doi:10.1038/srep04457. http://www.nature.com/articles/srep04457#supplementary-information

  49. Lam J, Lu S, Meretoja VV, Tabata Y, Mikos AG, Kasper FK (2014) Generation of osteochondral tissue constructs with chondrogenically and osteogenically predifferentiated mesenchymal stem cells encapsulated in bilayered hydrogels. Acta Biomater 10(3):1112–1123

    Article  Google Scholar 

  50. Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK (2013) Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Release 168(2):166–178. doi:10.1016/j.jconrel.2013.03.013

    Article  Google Scholar 

  51. Schek R, Taboas J, Segvich S, Hollister S, Krebsbach P (2004) Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng 10(9–10):1376–1385. doi:10.1089/ten.2004.10.1376

    Article  Google Scholar 

  52. Abrahamsson CK, Yang F, Park H, Brunger JM, Valonen PK, Langer R, Welter JF, Caplan AI, Guilak F, Freed LE (2010) Chondrogenesis and mineralization during in vitro culture of human mesenchymal stem cells on three-dimensional woven scaffolds. Tissue Eng Part A 16(12):3709–3718. doi:10.1089/ten.tea.2010.0190

    Article  Google Scholar 

  53. Shao X, Goh JCH, Hutmacher DW, Lee EH, Zigang G (2006) Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng 12(6):1539–1551. doi:10.1089/ten.2006.12.1539

    Article  Google Scholar 

  54. Scotti C, Wirz D, Wolf F, Schaefer DJ, Bürgin V, Daniels AU, Valderrabano V, Candrian C, Jakob M, Martin I, Barbero A (2010) Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds. Biomaterials 31(8):2252–2259. doi:10.1016/j.biomaterials.2009.11.110

    Article  Google Scholar 

  55. Schaefer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, Bergin I, Vunjak-Novakovic G, Freed L (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46(9):2524–2534

    Article  Google Scholar 

  56. Nooeaid P, Salih V, Beier JP, Boccaccini AR (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16(10):2247–2270. doi:10.1111/j.1582-4934.2012.01571.x

    Article  Google Scholar 

  57. Niyama K, Ide N, Onoue K, Okabe T, Wakitani S, Takagi M (2011) Construction of osteochondral-like tissue graft combining beta-tricalcium phosphate block and scaffold-free centrifuged chondrocyte cell sheet. J Orthop Sci 16(5):613–621. doi:10.1007/s00776-011-0120-9

    Article  Google Scholar 

  58. Ito S, Sato M, Yamato M, Mitani G, Kutsuna T, Nagai T, Ukai T, Kobayashi M, Kokubo M, Okano T, Mochida J (2012) Repair of articular cartilage defect with layered chondrocyte sheets and cultured synovial cells. Biomaterials 33(21):5278–5286. doi:10.1016/j.biomaterials.2012.03.073

    Article  Google Scholar 

  59. Shimizu R, Kamei N, Adachi N, Hamanishi M, Kamei G, Mahmoud EE, Nakano T, Iwata T, Yamato M, Okano T, Ochi M (2014) Repair mechanism of osteochondral defect promoted by bioengineered chondrocyte sheet. Tissue Eng Part A 21(5–6):1131–1141. doi:10.1089/ten.tea.2014.0310

    Google Scholar 

  60. Allan KS, Pilliar RM, Wang J, Grynpas MD, Kandel RA (2007) Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng 13(1):167–177. doi:10.1089/ten.2006.0081

    Article  Google Scholar 

  61. Sheehy EJ, Vinardell T, Buckley CT, Kelly DJ (2013) Engineering osteochondral constructs through spatial regulation of endochondral ossification. Acta Biomater 9(3):5484–5492

    Article  Google Scholar 

  62. Sachs E, Cima M, Cornie J (1990) Three-dimensional printing: rapid tooling and prototypes directly from a CAD model. CIRP Ann Manuf Technol 39(1):201–204

    Article  Google Scholar 

  63. Pereira D, Canadas R, Silva-Correia J, Marques A, Reis R, Oliveira J (2014) Gellan gum-based hydrogel bilayered scaffolds for osteochondral tissue engineering. Key Eng Mater 587:255–260

    Article  Google Scholar 

  64. Xiao W, He J, Nichol J, Wang L, Hutson C, Wang B (2011) Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomater 7:2384–2393

    Article  Google Scholar 

  65. Silva-Correia J, Zavan B, Vindigni V, Silva T, Oliveira J, Abatangelo G, Reis R (2013) Biocompatibility evaluation of ionic- and photo-crosslinked methacrylated gellan gum hydrogels: in vitro and in vivo study. Adv Healthc Mater 2:568–575

    Article  Google Scholar 

  66. Dahlin RL, Ni M, Meretoja VV, Kasper FK, Mikos AG (2014) TGF-β3-induced chondrogenesis in co-cultures of chondrocytes and mesenchymal stem cells on biodegradable scaffolds. Biomaterials 35(1):123–132. doi:10.1016/j.biomaterials.2013.09.086

    Article  Google Scholar 

  67. Pelttari K, Pippenger B, Mumme M, Feliciano S, Scotti C, Mainil-Varlet P, Procino A, von Rechenberg B, Schwamborn T, Jakob M, Cillo C, Barbero A, Martin I (2014) Adult human neural crest–derived cells for articular cartilage repair. Sci Transl Med 6(251):251ra119

    Article  Google Scholar 

  68. English A, Jones EA, Corscadden D, Henshaw K, Chapman T, Emery P, McGonagle D (2007) A comparative assessment of cartilage and joint fat pad as a potential source of cells for autologous therapy development in knee osteoarthritis. Rheumatology 46(11):1676–1683

    Article  Google Scholar 

  69. Khan WS, Adesida AB, Tew SR, Longo UG, Hardingham TE (2012) Fat pad-derived mesenchymal stem cells as a potential source for cell-based adipose tissue repair strategies. Cell Prolif 45(2):111–120. doi:10.1111/j.1365-2184.2011.00804.x

    Article  Google Scholar 

  70. Marsano A, Millward-Sadler SJ, Salter DM, Adesida A, Hardingham T, Tognana E, Kon E, Chiari-Grisar C, Nehrer S, Jakob M, Martin I (2007) Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthr Cartil 15(1):48–58. doi:10.1016/j.joca.2006.06.009

    Article  Google Scholar 

  71. Kim YS, Lee HJ, Yeo JE, Kim YI, Choi YJ, Koh YG (2015) Isolation and characterization of human mesenchymal stem cells derived from synovial fluid in patients with osteochondral lesion of the talus. Am J Sports Med 43(2):399–406. doi:10.1177/0363546514559822

    Article  Google Scholar 

  72. Maumus M, Manferdini C, Toupet K, Peyrafitte J-A, Ferreira R, Facchini A, Gabusi E, Bourin P, Jorgensen C, Lisignoli G, Noël D (2013) Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis. Stem Cell Res 11(2):834–844

    Article  Google Scholar 

  73. Meng F, He A, Zhang Z, Zhang Z, Lin Z, Yang Z, Long Y, Wu G, Kang Y, Liao W (2014) Chondrogenic differentiation of ATDC5 and hMSCs could be induced by a novel scaffold-tricalcium phosphate-collagen-hyaluronan without any exogenous growth factors in vitro. J Biomed Mater Res, Part A 102(8):2725–2735. doi:10.1002/jbm.a.34948

    Article  Google Scholar 

  74. Wang XQ, Wenk E, Zhang XH, Meinel L, Vunjak-Novakovic G, Kaplan DL (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release 134(2):81–90. doi:10.1016/j.jconrel.2008.10.021

    Article  Google Scholar 

  75. Luo ZW, Jiang L, Xu Y, Li HB, Xu W, Wu SC, Wang YL, Tang ZY, Lv YG, Yang L (2015) Mechano growth factor (MGF) and transforming growth factor (TGF)-beta 3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials 52:463–475

    Article  Google Scholar 

  76. Evans CH, Huard J (2015) Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol 11(4):234–242. doi:10.1038/nrrheum.2015.28

    Article  Google Scholar 

  77. Madry H, Kaul G, Zurakowski D, Vunjak-Novakovic G, Cucchiarini M (2013) cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model. Eur Cells Mater 25:229–247

    Google Scholar 

  78. Im G-I, Kim H-J, Lee JH (2011) Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes. Biomaterials 32(19):4385–4392

    Article  Google Scholar 

  79. Im G-I, Kim H-J, Lee JH (2011) Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes. Biomaterials 32(19):4385–4392. doi:10.1016/j.biomaterials.2011.02.054

    Article  Google Scholar 

  80. Needham CJ, Shah SR, Dahlin RL, Kinard LA, Lam J, Watson BM, Lu S, Kasper FK, Mikos AG (2014) Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2. Acta Biomater 10(10):4103–4112

    Article  Google Scholar 

  81. Vunjak-Novakovic G, Freed LE, Biron RJ, Langer R (1996) Effects of mixing on the composition and morphology of tissue-engineered cartilage. AIChE J 42(3):850–860. doi:10.1002/aic.690420323

    Article  Google Scholar 

  82. Freed LE, Hollander AP, Martin I, Barry JR, Langer R, Vunjak-Novakovic G (1998) Chondrogenesis in a cell-polymer-bioreactor system. Exp Cell Res 240(1):58–65. doi:10.1006/excr.1998.4010

    Article  Google Scholar 

  83. Carrier RL, Rupnick M, Lange R, Schoen FJ, Freed LE, Vunjak-Novakovic G (2002) Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng 8(2):175–188. doi:10.1089/107632702753724950

    Article  Google Scholar 

  84. Altman GH, Lu HH, Horan RL, Calabro T, Ryder D, Kaplan DL, Stark P, Martin I, Richmond JC, Vunjak-Novakovic G (2002) Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng 124(6):742–749. doi:10.1115/1.1519280

    Article  Google Scholar 

  85. Datta N, Pham QP, Sharma U, Sikavitsas VI, Jansen JA, Mikos AG (2006) In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci USA 103(8):2488–2493. doi:10.1073/pnas.0505661103

    Article  Google Scholar 

  86. Chang C-H, Lin C-C, Chou C-H, Lin F-H, Liu H-C (2005) Novel bioreactors for osteochondral tissue engineering. Biomed Eng Appl Basis Commun 17(01):38–43. doi:10.4015/s101623720500007x

    Article  Google Scholar 

  87. Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N, Gray M, Farley M, Kaplan D, Vunjak-Novakovic G (2006) Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials 27(36):6138–6149. doi:10.1016/j.biomaterials

    Article  Google Scholar 

  88. Mahmoudifar N, Doran PM (2005) Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors. Biomaterials 26(34):7012–7024. doi:10.1016/j.biomaterials.2005.04.062

    Article  Google Scholar 

  89. Kuiper NJ, Wang QG, Cartmell SH (2014) A perfusion co-culture bioreactor for osteochondral tissue engineered plugs. J Biomater Tissue Eng 4(2):162–171. doi:10.1166/jbt.2014.1145

    Article  Google Scholar 

  90. Lin H, Lozito TP, Alexander PG, Gottardi R, Tuan RS (2014) Stem Cell-Based Microphysiological Osteochondral System to Model Tissue Response to Interleukin-1β. Mol Pharm 11(7):2203–2212

    Article  Google Scholar 

  91. Nam J, Perera P, Rath B, Agarwal S (2013) Dynamic regulation of bone morphogenetic proteins in engineered osteochondral constructs by biomechanical stimulation. Tissue Eng Part A 19(5–6):783–792. doi:10.1089/ten.tea.2012.0103

    Article  Google Scholar 

  92. Russell W, Burch R (1959) The principles of humane experimental technique. Universities Federation for Animal Welfare

    Google Scholar 

  93. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  Google Scholar 

  94. Kiskinis E, Eggan K (2010) Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Investig 120(1):51–59. doi:10.1172/jci40553

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to the Portuguese Foundation for Science and Technology and POPH/FSE program for the fellowship grant of Raphaël Canadas (SFRH/BD/92565/2013). The FCT distinction attributed to J.M. Oliveira under the Investigator FCT program (IF/00423/2012) is also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim Miguel Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Canadas, R.F., Marques, A.P., Reis, R.L., Oliveira, J.M. (2017). Osteochondral Tissue Engineering and Regenerative Strategies. In: Oliveira, J., Reis, R. (eds) Regenerative Strategies for the Treatment of Knee Joint Disabilities. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-44785-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44785-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44783-4

  • Online ISBN: 978-3-319-44785-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics