Skip to main content

Towards Adjustable Signal Generation with Photonic Reservoir Computers

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9886))

Abstract

Reservoir Computing is a bio-inspired computing paradigm for processing time dependent signals. We have recently reported the first opto-electronic reservoir computer trained online by an FPGA chip. This setup makes it in principle possible to feed the output signal back into the reservoir, which in turn allows to tackle complex prediction tasks in hardware. In present work, we investigate numerically the performance of an offline-trained opto-electronic reservoir computer with output feedback on four signal generation tasks. We report very good results and show the potential of such setup to be used as a high-speed analog control system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. The 2006, 07 forecasting competition for neural networks & computational intelligence (2006). http://www.neural-forecasting-competition.com/NN3/. Accessed 21 Feb 2014

  2. Antonik, P., Duport, F., Smerieri, A., Hermans, M., Haelterman, M., Massar, S.: Online training of an opto-electronic reservoir computer. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9490, pp. 233–240. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26535-3_27

    Chapter  Google Scholar 

  3. Antonik, P., Hermans, M., Duport, F., Haelterman, M., Massar, S.: Towards pattern generation and chaotic series prediction with photonic reservoir computers. In: SPIE’s 2016 Laser Technology and Industrial Laser Conference, vol. 9732 (2016)

    Google Scholar 

  4. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011)

    Article  Google Scholar 

  5. Brunner, D., Soriano, M.C., Mirasso, C.R., Fischer, I.: Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2012)

    Article  Google Scholar 

  6. Duport, F., Schneider, B., Smerieri, A., Haelterman, M., Massar, S.: All-optical reservoir computing. Opt. Express 20, 22783–22795 (2012)

    Article  Google Scholar 

  7. Hammer, B., Schrauwen, B., Steil, J.J.: Recent advances in efficient learning of recurrent networks. In: Proceedings of the European Symposium on Artificial Neural Networks, pp. 213–216, Bruges, Belgium, April 2009

    Google Scholar 

  8. Haynes, N.D., Soriano, M.C., Rosin, D.P., Fischer, I., Gauthier, D.J.: Reservoir computing with a single time-delay autonomous Boolean node. Phys. Rev. E 91(2), 020801 (2015)

    Article  Google Scholar 

  9. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  10. Jaeger, H.: Short term memory in echo state networks. Technical GMD report 152 (2001)

    Google Scholar 

  11. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004)

    Article  Google Scholar 

  12. Larger, L., Soriano, M., Brunner, D., Appeltant, L., Gutiérrez, J.M., Pesquera, L., Mirasso, C.R., Fischer, I.: Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing. Opt. Express 20, 3241–3249 (2012)

    Article  Google Scholar 

  13. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comp. Sci. Rev. 3, 127–149 (2009)

    Article  MATH  Google Scholar 

  14. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14, 2531–2560 (2002)

    Article  MATH  Google Scholar 

  15. Martinenghi, R., Rybalko, S., Jacquot, M., Chembo, Y.K., Larger, L.: Photonic nonlinear transient computing with multiple-delay wavelength dynamics. Phys. Rev. Let. 108, 244101 (2012)

    Article  Google Scholar 

  16. Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M., Massar, S.: Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012)

    Article  Google Scholar 

  17. Sussillo, D., Abbott, L.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009)

    Article  Google Scholar 

  18. Triefenbach, F., Jalalvand, A., Schrauwen, B., Martens, J.P.: Phoneme recognition with large hierarchical reservoirs. Adv. Neural Inf. Process. Syst. 23, 2307–2315 (2010)

    Google Scholar 

  19. Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Verstraeten, D., Schrauwen, B., Dambre, J., Bienstman, P.: Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014)

    Article  Google Scholar 

  20. Vinckier, Q., Duport, F., Smerieri, A., Vandoorne, K., Bienstman, P., Haelterman, M., Massar, S.: High-performance photonic reservoir computer based on a coherently driven passive cavity. Optica 2(5), 438–446 (2015)

    Article  Google Scholar 

  21. Wyffels, F., Li, J., Waegeman, T., Schrauwen, B., Jaeger, H.: Frequency modulation of large oscillatory neural networks. Biol. Cybern. 108(2), 145–157 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by Interuniversity Attraction Poles program of the Belgian Science Policy Office under grant IAP P7-35 “photonics@be”, by the Fonds de la Recherche Scientifique FRS-FNRS and by the Action de la Recherche Concertée of the Académie Universitaire Wallonie-Bruxelles under grant AUWB-2012-12/17-ULB9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Antonik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Antonik, P., Hermans, M., Haelterman, M., Massar, S. (2016). Towards Adjustable Signal Generation with Photonic Reservoir Computers. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9886. Springer, Cham. https://doi.org/10.1007/978-3-319-44778-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44778-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44777-3

  • Online ISBN: 978-3-319-44778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics