Skip to main content

Hybrid Trajectory Decoding from ECoG Signals for Asynchronous BCIs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9886))

Abstract

Brain-Computer Interfaces (BCIs) are systems which convert brain neural activity into commands for external devices. BCI users generally alternate between No Control (NC) and Intentional Control (IC) periods. Numerous motor-related BCI decoders focus on the prediction of continuously-valued limb trajectories from neural signals. Although NC/IC discrimination is crucial for clinical BCIs, continuous decoders rarely support NC periods. Integration of NC support in continuous decoders is investigated in the present article. Two discrete/continuous hybrid decoders are compared for the task of asynchronous wrist position decoding from ElectroCorticoGraphic (ECoG) signals in monkeys. One static and one dynamic decoder, namely a Switching Linear (SL) decoder and a Switching Kalman Filter (SKF), are evaluated on high dimensional time-frequency-space ECoG signal representations. The SL decoder was found to outperform the SKF for both NC/IC class detection and trajectory modeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bishop, C.: Pattern Recognition and Machine Learning (Information Science and Statistics), 1st edn. Springer, New York (2007). corr. 2nd printing edn

    Google Scholar 

  2. Bundy, D.T., Pahwa, M., Szrama, N., Leuthardt, E.C.: Decoding three-dimensional reaching movements using electrocorticographic signals in humans. J. Neural. Eng. 13, 026021 (2016)

    Article  Google Scholar 

  3. Chao, Z.C., Nagasaka, Y., Fujii, N.: Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkey. Front. Neuroeng. 3, 3 (2010)

    Google Scholar 

  4. Eliseyev, A., Aksenova, T.: Stable and artifact-resistant decoding of 3D hand trajectories from ECoG signals using the generalized additive model. J. Neural. Eng. 11, 066005 (2014)

    Article  Google Scholar 

  5. Eliseyev, A., Mestais, C., Charvet, G., Sauter, F., Abroug, N., Arizumi, N., Moriniere, B.: CLINATEC BCI platform based on the ECoG-recording implant WIMAGINE and the innovative signal-processing: preclinical results. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1222–1225 (2014)

    Google Scholar 

  6. Flamary, R., Rakotomamonjy, A.: Decoding finger movements from ECoG signals using switching linear models. arXiv preprint (2011). arXiv:1106.3395

  7. Höskuldsson, A.: PLS regression methods. J. Chemometr. 2, 211–228 (1998)

    Article  Google Scholar 

  8. Koyama, S., Chase, S.M., Whitford, A.S., Velliste, M., Schwartz, A.B., Kass, R.E.: Comparison of brain-computer interface decoding algorithms in open-loop and closed-loop control. J. Comput. Neurosci. 29, 73–87 (2010)

    Article  Google Scholar 

  9. Lebedev, M.A., Nicolelis, M.A.L.: Brain-machine interfaces: past, present and future. TRENDS Neurosci. 29, 536–546 (2006)

    Article  Google Scholar 

  10. Leuthardt, E.C., Schalk, G., Moran, D., Ojemann, J.G.: The emerging world of motor neuroprosthetics: a neurosurgical perspective. Neurosurgery 59, 1–14 (2006)

    Article  Google Scholar 

  11. Mason, S.G., Kronegg, J., Huggins, J., Fatourechi, M., Schlögl, A.: Evaluating the performance of self-paced brain computer interface technology. Neil Squire Society, Vancouver, BC, Canada, Technical report (2006)

    Google Scholar 

  12. Mestais, C.S., Charvet, G., Sauter-Starace, F., Foerster, M., Ratel, D., Benabid, A.L.: WIMAGINE: wireless 64-channel ECoG recording implant for long term clinical applications. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 10–21 (2015)

    Article  Google Scholar 

  13. Murphy, K.P.: Switching kalman filters. Technical report (1998)

    Google Scholar 

  14. Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C.: Prediction of arm movement trajectories from ECoG-recordings in humans. J. Neurosci. Meth. 167, 105–114 (2008)

    Article  Google Scholar 

  15. Srinivasan, L., Eden, U.T., Mitter, S.K., Brown, E.N.: General-purpose filter design for neural prosthetic devices. J. Neurophysiol. 98, 2456–2475 (2007)

    Article  Google Scholar 

  16. Suway, S.B., Tien, R.N., Jeffries, S.M., Zohny, Z., Clanton, S.T., McMorland, A.J., Velliste, M.: Resting state detection for gating movement of a neural prosthesis. In: 6th International IEEE EMBS Conference on Neural Engineering (NER), pp. 665–668 (2013)

    Google Scholar 

  17. Velliste, M., Kennedy, S.D., Schwartz, A.B., Whitford, A.S., Sohn, J.W., McMorland, A.J.: Motor cortical correlates of arm resting in the context of a reaching task and implications for prosthetic control. J. Neurosci. 34, 6011–6022 (2014)

    Article  Google Scholar 

  18. Wang, P.T., Puttock, E.J., King, C.E., Schombs, A., Lin, J.J., Sazgar, M., Chui, L.A.: State and trajectory decoding of upper extremity movements from electrocorticogram. In: 6th International IEEE EMBS Conference on Neural Engineering (NER), pp. 969–972 (2013)

    Google Scholar 

  19. Wang, W., Collinger, J.L., Degenhart, A.D., Tyler-Kabara, E.C., Schwartz, A.B., Moran, D.W., Kelly, J.W.: An electrocorticographic brain interface in an individual with tetraplegia. PloS One 8, e55344 (2013)

    Article  Google Scholar 

  20. Waterhouse, S.R.: Classification and regression using mixtures of experts. Ph.D. thesis (1998)

    Google Scholar 

  21. Williams, J.J., Rouse, A.G., Thongpang, S., Williams, J.C., Moran, D.W.: Differentiating closed-loop cortical intention from rest: building an asynchronous electrocorticographic BCI. J. Neural. Eng. 10, 046001 (2013)

    Article  Google Scholar 

  22. Wu, W., Black, M.J., Mumford, D., Gao, Y., Bienenstock, E., Donoghue, J.P.: Modeling and decoding motor cortical activity using a switching Kalman filter. IEEE Trans. Biomed. Eng. 51, 933–942 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the French National Research Agency (ANR-Carnot Institute), Fondation Motrice, Fondation Nanosciences, Fondation de l’Avenir, and Fondation Philanthropique Edmond J. Safra. The authors are grateful to all members of the CEA-LETI-CLINATEC, and especially to A. Eliseyev, M. Janvier, G. Charvet, C. Mestais and Prof. A.-L. Benabid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetiana Aksenova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Schaeffer, MC., Aksenova, T. (2016). Hybrid Trajectory Decoding from ECoG Signals for Asynchronous BCIs. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9886. Springer, Cham. https://doi.org/10.1007/978-3-319-44778-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44778-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44777-3

  • Online ISBN: 978-3-319-44778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics