Skip to main content

Realizing Medium Spiny Neurons with a Simple Neuron Model

  • Conference paper
  • First Online:
Book cover Artificial Neural Networks and Machine Learning – ICANN 2016 (ICANN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9886))

Included in the following conference series:

  • 2707 Accesses

Abstract

Striatal medium spiny neurons (MSNs) constitute input nuclei of the basal ganglia. Most well-known dichotomous of striatal MSNs stem from dopaminergic modulation of striatal processing. Dopamine modulates excitability in striatal MSNs with a complex underlying mechanism and lack of balance in this delicate system leads to pathologies such as Parkinson’s disease. On the contrary, investigation of such a system requires simple, but yet comprehensive models that are capable of capturing complex behaviour of MSNs. We propose a reduced-computational but biologically plausible model that mimics the cell dynamics of striatal D\(_1\)- and D\(_2\)-type MSNs with different levels of dopamine using data from a recent study. Proposed computational model shows good matches to the MSN responses and captures some essential features of MSNs such as first spike latencies, dopamine modulated state transitions and enhanced response to depolarizing input during dopamine intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cools, R., Ivry, R.B., D’Esposito, M.: The human striatum is necessary for responding to changes in stimulus relevance. J. Cogn. Neurosci. 18, 1973–1983 (2006)

    Article  Google Scholar 

  2. Gillies, A., Arbuthnott, G.W.: Computational models of the basal ganglia. Mov. Disord. 15, 762–770 (2000)

    Article  Google Scholar 

  3. Nieoullon, A.: Dopamine and the regulation of cognition and attention. Neurobiology 67, 53–83 (2002)

    Google Scholar 

  4. Apicella, P., et al.: Neuronal activity in monkey striatum related to the expectation of predictable environmental events. J. Neurophysiol. 68, 945–960 (1992)

    Google Scholar 

  5. Gerfen, C.R.: Molecular effects of dopamine on striatal projection pathways. Trends Neurosci. 23, 64–70 (2000)

    Article  Google Scholar 

  6. Keshavan, M.S., et al.: Psychosis proneness and ADHD in young relatives of schizophrenia patients. Schizophr. Res. 59, 85–92 (2003)

    Article  Google Scholar 

  7. Weiner, I., Joel, D.: Dopamine in schizophrenia: dysfunctional processing in basal ganglia-thalamocortical split circuits. In: Handbook of Experimental Pharmacology: Dopamine in the CNS, vol. 154, pp. 417–471 (2002)

    Google Scholar 

  8. Humphries, M.D., et al.: Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models. Front. Comput. Neurosci 3, e1001011 (2009)

    Article  Google Scholar 

  9. Moyer, J.T., Wolf, J.A., Finkel, L.H.: Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. J. Neurophysiol. 98, 3731–3748 (2007)

    Article  Google Scholar 

  10. Gruber, A.J., Solla, S.A., Houk, J.C.: Dopamine induced bistability enhances signal processing in spiny neurons. In: Advances in Neural Information Processing Systems, vol. 15, pp. 165–172. MIT Press, Cambridge (2003)

    Google Scholar 

  11. Guthrie, M., Myers, C.E., Gluck, M.A.: A neurocomputational model of tonic and phasic dopamine in action selection: a comparison with cognitive deficits in Parkinson’s disease. Behav. Brain Res. 200, 48–59 (2009)

    Article  Google Scholar 

  12. Frank, M.J., O’Reilly, R.C.: A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav. Neurosci. 120, 497–517 (2006)

    Article  Google Scholar 

  13. Navarro-Lopez, E.M., Celikok, U., Sengor, N.S.: Hybrid Systems Neuroscience. In: El Hady, A. (ed.) Closed-Loop Neuroscience. Academic Press (2016, in press)

    Google Scholar 

  14. Deco, G., Rolls, E.T.: Attention, short-term memory, and action selection: a unifying theory. Neurobiology 76, 236–256 (2005)

    Google Scholar 

  15. Gertler, T.S., Chan, C.S., Surmeier, D.J.: Dichotomous anatomical properties of adult striatal medium spiny neurons. J. Neurosci. 28, 10814–10824 (2008)

    Article  Google Scholar 

  16. Nicola, S.M., Surmeier, J., Malenka, R.C.: Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci. 23, 185–215 (2000)

    Article  Google Scholar 

  17. Nisenbaum, E.S., Wilson, C.J.: Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons. J. neurosci. 15, 4449–4463 (1995)

    Google Scholar 

  18. Lin, C.W., et al.: Characterization of cloned human dopamine D\(_{1}\) receptor-mediated calcium release in 293 cells. Mol. Pharmacol. 47, 131–139 (1995)

    Google Scholar 

  19. Seabrook, G.R., et al.: Pharmacology of high-threshold calcium currents in GH\(_{4}\)C\(_{1}\) pituitary cells and their regulation by activation of human D\(_{2}\) and D\(_{4}\) dopamine receptors. Br. J. Pharmacol. 112, 728–734 (1994)

    Article  Google Scholar 

  20. Wilson, C.J., Kawaguchi, Y.: The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16, 2397–2410 (1996)

    Google Scholar 

  21. Gurney, K., Prescott, T.J., Redgrave, P.: A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol. Cybern. 84, 401–410 (2001)

    Article  MATH  Google Scholar 

  22. Wolf, J.A., et al.: NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J. Neurosci. 25, 9080–9095 (2005)

    Article  Google Scholar 

  23. Elibol, R., Sengor, N.S.: A computational model investigating the role of dopamine on synchronization of striatal medium spiny neurons. In: Medicine Technology Congress, pp. 147–150 (2014)

    Google Scholar 

  24. Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2007)

    Google Scholar 

  25. Mahon, S., et al.: Intrinsic properties of rat striatal output neurones and time-dependent facilitation of cortical inputs in vivo. J. Physiol. 527, 345–354 (2000)

    Article  Google Scholar 

  26. Celikok, U., Navarro-Lopez, E.M., Sengor, N.S.: A Computational Model Describing the Interplay of Basal Ganglia and Subcortical Background Oscillations during Working Memory Processes. arXiv preprint, arXiv:1601.07740 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Utku Çelikok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Çelikok, S.U., Şengör, N.S. (2016). Realizing Medium Spiny Neurons with a Simple Neuron Model. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9886. Springer, Cham. https://doi.org/10.1007/978-3-319-44778-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44778-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44777-3

  • Online ISBN: 978-3-319-44778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics