Skip to main content

Fast and Slow Learning in a Neuro-Computational Model of Category Acquisition

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2016 (ICANN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9886))

Included in the following conference series:

  • 2678 Accesses

Abstract

We present a neuro-computational model that, based on brain principles, succeeds in performing a category learning task. In particular, the network includes a fast learner (the basal ganglia) that via reinforcement learns to execute the task, and a slow learner (the prefrontal cortex) that can acquire abstract representations from the accumulation of experiences and ultimately pushes the task level performance to higher levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poldrack, R.A., Prabhakaran, V., Seger, C.A., Gabrieli, J.D.E.: Striatal activation during acquisition of a cognitive skill. Neuropsychology 13, 564 (1999)

    Article  Google Scholar 

  2. Poldrack, R.A., Clark, J., Pare-Blagoev, E.J., Shohamy, D., Moyano, J.C., Myers, C., Gluck, M.A.: Interactive memory systems in the human brain. Nature 414, 546–550 (2001)

    Article  Google Scholar 

  3. Nomura, E., Maddox, W.T., Filoteo, J.V., Ing, A.D., Gitelman, D.R., Parrish, T.B., Mesulam, M.M., Reber, P.J.: Neural correlates of rule-based and information-integration visual category learning. Cere. Cortex 17, 37–43 (2007)

    Article  Google Scholar 

  4. Seger, C.A., Cincotta, C.M.: The roles of the caudate nucleus in human classification learning. J. Neurosci. 11, 2941–2951 (2005)

    Article  Google Scholar 

  5. Zeithamova, D., Maddox, W.T., Schnyer, D.M.: Dissociable prototype learning systems: evidence from brain imaging and behavior. J. Neurosci. 28, 13194–13201 (2008)

    Article  Google Scholar 

  6. Merchant, H., Zainos, A., Hernández, A., Salinas, E., Romo, R.: Functional properties of primate putamen neurons during the categorization of tactile stimuli. J. Neurophysiol. 77, 1132–1154 (1997)

    Google Scholar 

  7. Cincotta, C.M., Seger, C.A.: Dissociation between striatal regions while learning to categorize via feedback and via observation. J. Cognit. Neurosci. 19, 249–265 (2007)

    Article  Google Scholar 

  8. Humphries, M.D., Stewart, R.D., Gurney, K.N.: A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J. Neurosci. 26, 12921–12942 (2006)

    Article  Google Scholar 

  9. Grillner, S., Hellgren, J., Menard, A., Saitoh, K., Wikström, M.A.: Mechanisms for selection of basic motor programs-roles for the striatum and pallidum. Trends Neurosci. 28, 364–370 (2005)

    Article  Google Scholar 

  10. Hélie, S., Ell, S.W., Ashby, F.G.: Learning robust cortico-cortical associations with the basal ganglia: an integrative review. Cortex 64, 123–135 (2015)

    Article  Google Scholar 

  11. Freedman, D.J., Riesenhuber, M., Poggio, T., Miller, E.K.: A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J. Neurosci. 23, 5235–5246 (2003)

    Google Scholar 

  12. Freedman, D.J., Riesenhuber, M., Poggio, T., Miller, E.K.: Visual categorization and the primate prefrontal cortex: neurophysiology and behavior. J. Neurophysiol. 88, 929–941 (2002)

    Google Scholar 

  13. Freedman, D.J., Riesenhuber, M., Poggio, T., Miller, E.K.: Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001)

    Article  Google Scholar 

  14. Miller, E.K., Cohen, J.D.: An integrative theory of prefrontal cortex function. Ann. Rev. Neurosci. 24, 167–202 (2001)

    Article  Google Scholar 

  15. Vitay, J., Dinkelbach, H., Hamker, F.H.: ANNarchy: a code generation approach to neural simulations on parallel hardware. Front. Neuroinf. 9, 19 (2015)

    Article  Google Scholar 

  16. Schroll, H., Vitay, J., Hamker, F.H.: Dysfunctional and compensatory synaptic plasticity in Parkinson’s disease. Eur. J. Neurosci. 39, 688–702 (2014)

    Article  Google Scholar 

  17. Baladron, J., Hamker, F.H.: A spiking neural network based on the basal ganglia functional anatomy. Neural Netw. 67, 1–13 (2015)

    Article  Google Scholar 

  18. Packard, M.G., Knowlton, B.J.: Learning and memory functions of the basal ganglia. Ann. Rev. Neurosci. 25, 563–593 (2002)

    Article  Google Scholar 

  19. Seger, C.A., Miller, E.K.: Category learning in the brain. Ann. Rev. Neurosci. 33, 203 (2010)

    Article  Google Scholar 

  20. Antzoulatos, E.G., Miller, E.K.: Differences between neural activity in prefrontal cortex and striatum during learning of novel abstract categories. Neuron 71, 243–249 (2011)

    Article  Google Scholar 

  21. Miller, E.K., Buschman, T.J.: Rules through recursion: how interactions between the frontal cortex and basal ganglia may build abstract, complex rules from concrete, simple ones. In: Neuroscience of Rule-Guided Behavior, pp. 419–440 (2007)

    Google Scholar 

  22. Seger, C.A.: The basal ganglia in human learning. Neuroscientist 12, 285–290 (2006)

    Article  Google Scholar 

  23. Haber, S.N.: The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat. 26, 317–330 (2003)

    Article  Google Scholar 

  24. McHaffie, J.G., Stanford, T.R., Stein, B.E., Coizet, V., Redgrave, P.: Subcortical loops through the basal ganglia. Trends Neurosci. 28, 401–407 (2005)

    Article  Google Scholar 

  25. Stallkamp, J., Schlipsing, M., Salmen, F., Igel, C.: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition. Neural Netw. 32, 323–332 (2012)

    Article  Google Scholar 

  26. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  27. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. A Bradford Book, Cambridge (1998)

    Google Scholar 

Download references

Acknowledgments

This work has been funded by DFG HA2630/4-1 and in part by DFG HA2630/8-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Villagrasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Villagrasa, F., Baladron, J., Hamker, F.H. (2016). Fast and Slow Learning in a Neuro-Computational Model of Category Acquisition. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9886. Springer, Cham. https://doi.org/10.1007/978-3-319-44778-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44778-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44777-3

  • Online ISBN: 978-3-319-44778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics