Skip to main content

An Adjusted Recommendation List Size Approach for Users’ Multiple Item Preferences

  • Conference paper
  • First Online:
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9883))

Abstract

This paper describes the design and implementation of a novel approach to dynamically adjust the recommendation list size for multiple preferences of a user. By considering users’ earlier preferences, machine learning techniques are employed to estimate the optimal recommendation list size according to current conditions of users. The proposed approach has been evaluated on real-life data from grocery shopping domain by conducting a series of experiments. The results show that the proposed approach achieves better overall recommendation quality than the standard approach and it outperforms the benchmark method in efficiency by shortening the recommendation list while maintaining the effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22, 5–53 (2004)

    Article  Google Scholar 

  2. Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. Springer, New York (2011)

    Google Scholar 

  3. Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 158–166. ACM (1999)

    Google Scholar 

  4. Pu, P., Faltings, B., Chen, L., Zhang, J., Viappiani, P.: Usability guidelines for product recommenders based on example critiquing research. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 511–545. Springer, New York (2011)

    Google Scholar 

  5. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 158–167. ACM (2000)

    Google Scholar 

  6. Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recommendation tasks. J. Mach. Learn. Res. 10, 2935–2962 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Machine Learning: Proceedings of the Twelfth International Conference, pp. 194–202 (1995)

    Google Scholar 

  8. Catlett, J.: On changing continuous attributes into ordered discrete attributes. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS(LNAI), vol. 482, pp. 164–178. Springer, Heidelberg (1991)

    Google Scholar 

  9. Kotsiantis, S., Kanellopoulos, D.: Discretization techniques: a recent survey. GESTS Int. Trans. Comput. Sci. Eng. 32, 47–58 (2006)

    Google Scholar 

  10. Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, Amsterdam (2014)

    Google Scholar 

  11. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Philip, S.Y.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14, 1–37 (2008)

    Article  Google Scholar 

  12. Rucker, D.D., McShane, B.B., Preacher, K.J.: A researcher’s guide to regression, discretization, and median splits of continuous variables. J. Consum. Psychol. 25, 666–678 (2015)

    Article  Google Scholar 

  13. Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 257–297. Springer, New York (2011)

    Google Scholar 

  14. Campos, P.G., Díez, F., Cantador, I.: Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model. User-Adapt. Interact. 24, 67–119 (2014)

    Article  Google Scholar 

  15. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 39–46. ACM (2010)

    Google Scholar 

  16. Yang, Y.M., Liu, X.: A re-examination of text categorization methods. In: Proceedings of 22nd International Conference on Research and Development in Information Retrieval, SIGIR 1999, pp. 42–49 (1999)

    Google Scholar 

  17. Cumby, C., Fano, A., Ghani, R., Krema, M.: Predicting customer shopping lists from point-of-sale purchase data. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 402–409. ACM (2004)

    Google Scholar 

  18. Cumby, C., Fano, A., Ghani, R., Krema, M.: Building intelligent shopping assistants using individual consumer models. In: Proceedings of the 10th International Conference on Intelligent User Interfaces, pp. 323–325. ACM (2005)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Scientific and Technological Research Council of Turkey (TUBITAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhat Peker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Peker, S., Kocyigit, A. (2016). An Adjusted Recommendation List Size Approach for Users’ Multiple Item Preferences. In: Dichev, C., Agre, G. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2016. Lecture Notes in Computer Science(), vol 9883. Springer, Cham. https://doi.org/10.1007/978-3-319-44748-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44748-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44747-6

  • Online ISBN: 978-3-319-44748-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics