Skip to main content

Non-supervised Learning Applied to Analysis of Topological Metrics of Optical Networks

  • Chapter
  • First Online:
  • 875 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 664))

Abstract

Graphs can be used to model many real-world problems, such as social networks, telecommunication networks and biological structures. To aid the analysis of complex networks, several topological metrics and generational procedures have been proposed in the last years. This work offers a systematic method to analyse different backbone optical networks, based on a non-supervised algorithm for clustering and investigates the power of a recently proposed topological metrics, named \({I({\hat{\mathcal {F}}})}\). The metrics \({I({\hat{\mathcal {F}}})}\) and three others are applied to identify the best canonical model to represent real backbone optical networks. According to the obtained results, the clustering procedure allows to indicate \({I({\hat{\mathcal {F}}})}\) as the better metrics to explain the installed capacity for the analysed networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    www.researchgate.net/publication/283727923_dataset_optical_networks_20151113?ev=prf_pub.

References

  1. Araújo DRB, Bastos-Filho CJA, Martins-Filho JF (2013) Towards using DFT to characterize complex networks. In: XXXI Simpósio Brasileiro de Telecomunicacoes (SBrT2013), pp 1–5

    Google Scholar 

  2. Araújo DRB, Bastos-Filho CJA, Martins-Filho JF (2014) Métricas de redes complexas para análise de redes Ópticas. Revista de Tecnologia da Informacao e Comunicacao 4(2):1–8

    Article  Google Scholar 

  3. Araújo DRB, Bastos-Filho CJA, Martins-Filho JF (2014) Using the entropy of DFT of the Laplacian eigenvalues to assess networks. In: Complex networks V. Studies in computational intelligence, vol 549. Springer, Heidelberg, pp 209–216

    Google Scholar 

  4. Araújo DRB, Bastos-Filho CJA, Martins-Filho JF (2015) Artificial neural networks to estimate blocking probability of transparent optical networks: a robustness study for different networks. In: Proceedings of the 17th international conference on transparent optical networks ICTON 2015

    Google Scholar 

  5. Araújo DRB, Bastos-Filho CJA, Martins-Filho JF (2015) Methodology to obtain a fast and accurate estimator for blocking probability of optical networks. J Opt Commun Netw 7(5):380–391

    Article  Google Scholar 

  6. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  MathSciNet  MATH  Google Scholar 

  7. Brun M, Sima C, Hua J, Lowey J, Carroll B, Suh E, Dougherty ER (2007) Model-based evaluation of clustering validation measures. Pattern Recognit 40(2007):807–824

    Article  MATH  Google Scholar 

  8. Cardenas JP, Benito RM, Mouronte ML, Feliu V (2009) The effect of the complex topology on the robustness of Spanish SDH network. In: Fifth international conference on networking and services, 2009. ICNS ’09, pp 86–90. doi:10.1109/ICNS.2009.28

  9. Committee on Network Science for Future Army Applications, N.R.C (2005) Network science. The National Academies Press, Washington, D.C. http://www.nap.edu/openbook.php?record_id=11516

  10. Cordeiro L (2013) Atlas Brasileiro de Telecomunicações. 13. Converge Comunicações

    Google Scholar 

  11. Dougherty E, Barrera J, Brun M, Kim S, Cesar R, Chen Y, Bittner M, Trent J (2002) Inference from clustering with application to gene-expression microarray. J Comput Biol 9(1):105–126

    Article  Google Scholar 

  12. Erdos P, Rényi A (1960) On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences, pp 17–61

    Google Scholar 

  13. Fiedler M (1973) Algebraic connectivity of graphs. Czechoslov Math J 23:298–305

    Google Scholar 

  14. Guenter S, Bunke H (2001) Validation indices for graph clustering. In: Proceedings of the 3rd IAPR-TC15 workshop on graph-based representations in pattern recognition, pp 229–238

    Google Scholar 

  15. Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. Intell Inf Syst J 17(2–3):107–145

    Article  MATH  Google Scholar 

  16. Jain A, Murty M, Flynn P (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  17. Knight S, Nguyen HX, Falkner N, Bowden R, Roughan M (2011) The Internet topology zoo. IEEE J Sel Areas Commun 29(9):1765–1775. doi:10.1109/JSAC.2011.111002

    Article  Google Scholar 

  18. Kohonen T (1997) Self-organizing maps, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  19. Lewis TG (2009) Network science - theory and applications. Wiley, New York

    Google Scholar 

  20. Moss ML, Townsend AM (2000) The Internet backbone and the American metropolis. Inf Soc J 16(1):35–47

    Article  Google Scholar 

  21. Tranos E (2011) The topology and the emerging urban geographies of the Internet backbone and aviation networks in Europe: a comparative study. Environ Plan 43(2):378–392

    Article  Google Scholar 

  22. Tranos E, Gillespie A (2009) The spatial distribution of Internet backbone networks in Europe: a metropolitan knowledge economy perspective. Eur Urban Reg Stud 16(4):423–437

    Article  Google Scholar 

  23. Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442

    Google Scholar 

  24. Wu J, Barahona M, Tan YJ, Deng HZ (2011) Spectral measure of structural robustness in complex networks. IEEE Trans Syst, Man Cybern, Part A: Syst Hum, 41(6):1244–1252. doi:10.1109/TSMCA.2011.2116117

Download references

Acknowledgments

The authors acknowledge the financial support from CNPq, CAPES, UFPE, UFRPE and UPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo R. B. de Araújo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Araújo, D.R.B., Martins-Filho, J.F., Bastos-Filho, C.J.A. (2017). Non-supervised Learning Applied to Analysis of Topological Metrics of Optical Networks. In: Nedjah, N., Lopes, H., Mourelle, L. (eds) Designing with Computational Intelligence. Studies in Computational Intelligence, vol 664. Springer, Cham. https://doi.org/10.1007/978-3-319-44735-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44735-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44734-6

  • Online ISBN: 978-3-319-44735-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics