Structural and Stratigraphic Architecture of the Corinth Rift (Greece): An Integrated Onshore to Offshore Basin-Scale Synthesis

  • Sébastien RohaisEmail author
  • Isabelle Moretti
Part of the Frontiers in Earth Sciences book series (FRONTIERS)


The overall rifting history of the Corinth basin in Greece is still debated due to (1) the lack of deep wells to constrain the offshore domain, (2) sparse dating available onshore and (3) the only few integrated basin-scale studies covering both offshore and onshore data providing an homogeneous overview of its stratigraphic architecture. This paper provides an update to the structural and stratigraphic architecture of the Corinth rift through the results of field mapping, geological and structural map synthesis, outcrop stratigraphic characterization and seismic sequence stratigraphic correlations. A comparison with the surrounding basins to extrapolate ages and a correlation between onshore stratigraphic architecture and offshore seismic stratigraphy in the Corinth rift are proposed to establish time lines of the key stages during the rift evolution, and its relationship with the previous Hellenic compressive phase and the Aegean back-arc opening eastward. The rift history can be subdivided into two major syn-rift phases. A Syn-rift 1 including (a) the rift initiation at around 5.3 Ma with continental to lacustrine sediments deposited in km-scale isolated depocenters. (b) The rift widening (ca. 5.3–3.0 Ma) combined with a rift propagation from east to west. First marine incursions were recorded along the Corinth Isthmus. At that time, the rift was still subdivided into numerous 2–10 km-wide depocenters controlled by active faults where continental to lacustrine deposits occurred. The depocenters progressively grew and became linked. (c) The Syn-rift 1 “climax” (ca. 3.0–2.6 Ma) with 15–25 km-long fault segments subdivided the rift into 5–10 km wide fault blocks. Sedimentation was characterized by thick alluvial fans and large Gilbert-type deltas along the active fault segments and a starved basin along the basin axis. Marine connection with the Mediterranean Sea was dominantly established thought the Corinth Isthmus. (d) The Syn-rift 1 phase ended with a basinward fault migration phase (ca. 2.6–0.8 Ma) characterized by a progressive demise of the rift border fault and a rapid forced regressive trend recorded by the large Gilbert-type deltas. Bathymetry continued to increase along the basin axis. An additional phase of rifting (Syn-rift 2) ensued, and was characterized by the Peloponnesus margin uplift combined with an increase of both tectonic and total subsidences in the basin axis (ca. 0.8 Ma to present day). The depositional profile was shorter than during the previous stages, the rift progressively narrowed and the sedimentation rate strongly increased in the depocenter. The short lived duration of each phase and the peculiarity of the present phase are discussed in relation to the inherited structures and relative influence of the far field stress changes within the global context of the Hellenic subduction.


Corinth rift Syn-rift Stratigraphic architecture Fault Structural evolution Back-arc Seismic stratigraphy 



This work was funded by IFP Energies Nouvelles in the frame of the Numerical and Geological Modeling project. Brian Taylor, Laurent Jolivet and François Roure provided suitable comments on an earlier version of this paper that led to improve the manuscript. We thank Lisa Mc Neill and Dimitris Sakellariou for helpful discussions. We are very grateful to April Lloyd for post-editing the English style and grammar. We also thank the IGME, Athens, for permissions to do fieldwork for the last 12 years in the Gulf of Corinth. Finally, we thank two anonymous reviewers for helpful constructive comments and corrections of an earlier version.


  1. Anastasakis G, Piper DJW (2005) Late neogene evolution of the western South Aegean volcanic arc: sedimentary imprint of volcanicity around Milos. Mar Geol 215(2005):135–158CrossRefGoogle Scholar
  2. Anastasakis G, Piper DJW, Dermitzakis MD, Karakitsios V (2006) Upper cenozoic stratigraphy and paleogeographic evolution of Myrtoon and adjacent basins, Aegean Sea, Greece. Mar Pet Geol 23:353–369CrossRefGoogle Scholar
  3. Armijo R, Meyer B, King GCP, Rigo A, Papanastassiou M (1996) Quaternary evolution of the Corinth rift and its implications for the late Cenozoic evolution of the Aegean. Geophys J Int 126:11–53CrossRefGoogle Scholar
  4. Armijo R, Meyer B, Hubert A, Barka A (1999) Westward propagation of the North Anatolian fault into the northern Aegean; timing and kinematics. Geology 27(3):267–270CrossRefGoogle Scholar
  5. Aronis G, Panayotides GR, Monopolis D, Morikis AN, Zachos K (1964) Geological map of Greece, Delfi Sheet, scale 1:50 000. Institute of Geology and Mineral Exploration, AthensGoogle Scholar
  6. Aubouin J (1959) Contribution à l’étude géologique de la Grèce septentrionale: les confins de l’Epire et de la Thessalie. (These, Paris, 1958). Ann Geol Pays Hell, Ire série, vol X, 483 pGoogle Scholar
  7. Aubouin J, Brunn JH, Celet P, Dercourt J, Godfriaux I, Mercier J (1963) Esquisse de la Géologie de la Grèce, Fallot memorial volume, Societe Geologique de France, pp 583–610Google Scholar
  8. Avallone A, Briole P, Agatza-Balodimou AM, Billiris H, Charade O, Mitsakaki C, Nercessian A, Papazissi K, Paradissis D, Veis G (2004) Analysis of eleven years of deformation measured by GPS in the Corinth rift laboratory area. Comptes Rendus Geosci 336(4–5):301–311. doi: 10.1016/j.crte.2003.12.007 CrossRefGoogle Scholar
  9. Beckers A, Hubert-Ferrari A, Beck C, Bodeux S, Tripsanas E, Sakellariou D, De Batist M (2015) Active faulting at the western tip of the Gulf of Corinth, Greece, from high-resolution seismic data. Mar Geol 360:55–69. doi: 10.1016/j.margeo.2014.12.003 CrossRefGoogle Scholar
  10. Bell RE, McNeill LC, Bull JM, Henstock TJ (2008) Evolution of the offshore western Gulf of Corinth. Geol Soc Am Bull 120:156–178CrossRefGoogle Scholar
  11. Bell RE, McNeill LC, Bull JM, Henstock TJ, Collier REL, Leeder MR (2009) Fault architecture, basin structure and evolution of the Gulf of Corinth rift, central Greece. Basin Res 21:824–855. doi: 10.1111/j.1365-2117.2009.00401.x CrossRefGoogle Scholar
  12. Bell RE, McNeill LC, Henstock TJ, Bull JM (2011) Comparing extension on multiple time and depth scales in the Corinth rift Central Greece. Geophys J Int 186:463–470CrossRefGoogle Scholar
  13. Benedicto A, Plagnes V, Vergély P, Flotté N, Schultz RA (2008) Fault and fluid interaction in a rifted margin: integrated study of calcite-sealed fault-related structures (Southern Corinth margin). In: Wibberley CAJ, Kurz W, Imber J, Holdsworth RE, Collettini C (eds) The internal structure of fault zones: implications for mechanical and fluid-flow properties, vol 299. Geological Society, London, pp 257–275 (Special Publications)Google Scholar
  14. Bentham P, Collier REL, Gawthorpe RL, Leeder MR, Prossers S, Stark C (1991) Tectono-sedimentary development of an extensional basin: the Neogene Megara Basin, Greece. J Geol Soc Lond 148:923–934CrossRefGoogle Scholar
  15. Bernard P, Briole P, Meyer B, Lyon-Caen H, Gomez JM, Tiberi C, Berge C, Cattin R, Hatzfeld D, Lachet C, Lebrun B, Deschamps A, Courboulex F, Larroque C, Rigo A, Massonnet D, Papadimitriou P, Kassaras J, Diagourtas D, Makropoulos K (1997) The Ms = 6.2, June 15, 1995 Aigion earthquake (Greece): evidence for low angle normal faulting in the Corinth rift. J Seismol 1:131–150CrossRefGoogle Scholar
  16. Bernard P et al (2006) Seismicity, deformation and seismic hazard in the western rift of Corinth: new insights from the Corinth rift laboratory (CRL). Tectonophysics 426:7–30CrossRefGoogle Scholar
  17. Briole P, Rigo A, Lyon-Caen H, Ruegg JC, Papazissi K, Mitsakaki C, Balodimou A, Veis G, Hatzfield D, Deschamps A (2000) Active deformation of the Corinth Rift, Greece: results from repeated global positioning system surveys between 1990 and 1995. J Geophys Res 105:605–625Google Scholar
  18. Brooks M, Ferentinos G (1984) Tectonics and sedimentation in the Gulf of Corinth and the Zakynthos and Kefallinia channels, western Greece. Tectonophyiscs 101:25–54CrossRefGoogle Scholar
  19. Causse C, Moretti I, Ghisetti F, Eschard R, Micarelli L, Ghaleb B, Frank N (2004) Kinematics of the Corinth Gulf inferred from calcite dating and syntectonic sedimentary characteristics. C R Geosci 336:281–290CrossRefGoogle Scholar
  20. Chaboureau AC, Guillocheau F, Robin C, Rohais S, Moulin M, Aslanian D (2013) Paleogeographic evolution of the central segment of the South Atlantic during early cretaceous times: paleotopographic and geodynamic implications. Tectonophysics 604:191–223CrossRefGoogle Scholar
  21. Charalampakis M, Lykousis V, Sakellariou D, Papatheodorou G, Ferentinos G (2014) The tectono-sedimentary evolution of the Lechaion Gulf, the south eastern branch of the Corinth graben, Greece. Mar Geol 351:58–75. doi: 10.1016/j.margeo.2014.03.014 CrossRefGoogle Scholar
  22. Chéry J (2001) Core complex mechanics: from the gulf of Corinth to the Snake Range. Geology 29(5):439–442CrossRefGoogle Scholar
  23. Chouliaras G, Kassaras I, Kapetanidis V, Petrou P, Drakatos G (2015) Seismotectonic analysis of the 2013 seismic sequence at the western Corinth rift. J Geodynam 90:42–57. doi: 10.1016/j.jog.2015.07.001
  24. Clark SR, Stegman D, Müller RD (2008) Episodicity in back-arc tectonic regimes. Phys Earth Planet Inter 171:265–279. doi: 10.1016/j.pepi.2008.04.01
  25. Clement C, Sachpazi M, Charvis P, Graindorge D, Laigle M, Hirn A, Zafiropoulos G (2004) Reflection-refraction seismics in the Gulf of Corinth: hints at deep structure and control of the deep marine basin. Tectonophysics 391:85–95CrossRefGoogle Scholar
  26. Colletta B, LeQuellec P, Letouzey J, Moretti I (1988) Longitudinal evolution of the Suez rift structure (Egypt). Tectonophysics 153:221–233CrossRefGoogle Scholar
  27. Colletta B, Hebrard F, Letouzey J, Werner P, Rudkiewicz JL (1990) Tectonic style and crustal structure of the Eastern Cordillera (Colombia) from a balanced cross-section. In: Letouzey J (ed) Petroleum and tectonics in mobile belts. Editions Technip, Paris, pp 81–100Google Scholar
  28. Collier REL (1988) Sedimentary facies evolution in continental fault-bounded basins formed by crustal extension: the Corinth Basin, Greece. PhD thesis, University of LeedsGoogle Scholar
  29. Collier REL (1990) Eustatic and tectonic controls upon quaternary coastal sedimentation in the Corinth Basin, Greece. J Geol Soc 147:301–314CrossRefGoogle Scholar
  30. Collier REL, Dart CJ (1991) Neogene to quaternary rifting, sedimentation and uplift in the Corinth. J Geol Soc Lond 148:1049–1065CrossRefGoogle Scholar
  31. Collier REL, Leeder M, Trout M, Ferentinos G, Lyberis E, Papatheodorou G (2000) High sedimentation yields and cool wet winters: test of last glacial paleoclimates in the northern Mediterranean. Geology 28:999–1002CrossRefGoogle Scholar
  32. Console R, Carluccio R, Papadimitriou E, Karakostas V (2015) Synthetic earthquake catalogs simulating seismic activity in the Corinth Gulf, Greece, fault system, J Geophys Res Solid Earth, vol 120, doi: 10.1002/2014JB011765
  33. Danatsas I (1989) Die känozoischen Ostrakoden des NW- und N-Peloponnes und ihre stratigraphische, paläoökologische und paläogeographische Bedeutung. Inaug. Diss. Münster, 171Google Scholar
  34. Danatsas I (1994) Zur Entwicklung der miozänen-altpleitozänen Ostrakoden-Fauna des Korinth-Beckens, Griechenland. Münster. Forsch Geol Paläont 76:191–200Google Scholar
  35. Dart CJ, Collier REL, Gawthorpe RL, Keller JVA, Nichols G (1994) Sequence stratigraphy of (?) Pliocene-quaternary synrift, Gilbert-type fan deltas, northern Peloponnesos, Greece. Mar Petrol Geol 11:545–560CrossRefGoogle Scholar
  36. Demoulin A, Beckers A, Hubert-Ferrari A (2015) Patterns of quaternary uplift of the Corinth rift southern border (N. Peloponnese, Greece) revealed by fluvial landscape morphometry. Geomorphology 246:188–204Google Scholar
  37. Dercourt J (1964) Contribution à l’étude géologique du secteur du Péloponnèse septentrional. PhD thesis, University of Paris, pp 1–418Google Scholar
  38. Dercourt J, De Wever P, Fleury J (1976) Données sur le style tectonique de la nappe de Tripolitza en Peloponnese septentional (Grece). Bull Soc Geol Fr 7(28):317–326Google Scholar
  39. Desperet C (1913) Observations sur l’histoire géologique pliocène et quaternaire du golfe et de l’isthme de Corinthe. CR hebdomadaire des séances de l’Académie des Sciences 156Google Scholar
  40. Dewey JF, Sengör AMC (1979) Agean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geol Soc Am Bull 90:84–92CrossRefGoogle Scholar
  41. Doutsos T, Piper G, Boronkay K, Koukouvelas I (1993) Kinematics of the central Hellenides. Tectonics 12:936–953Google Scholar
  42. Doutsos T, Piper DJW (1990) Listric faulting, sedimentation, and morphological evolution of the quaternary eastern Corinth rift, Greece: first stages of continental rifting. Geol Soc Am Bull 102:812–829CrossRefGoogle Scholar
  43. Doutsos T, Kontopoulos N, Poulimenos G (1988) The Corinth-Patras rift as the initial stage of the continental fragmentation behind an active island arc [Greece]. Basin Res 1:177–190CrossRefGoogle Scholar
  44. Doutsos T, Koukouvelas I, Poulimenos G, Kokkalas S, Xypolias P, Skourlis K (2000) An exhumation model of the south Peloponnesus, Greece. Int J Earth Sci 89:350–365. doi: 10.1007/s005310000087 CrossRefGoogle Scholar
  45. Dufaure JJ (1975) Le relief du Péloponnèse. PhD thesis, Université Paris IV, France, p 1422Google Scholar
  46. Dufaure JJ, Bousquet B, Péchoux PY (1979) Contribution de la géomorphologie à la connaissance du Quaternaire continental grec, en relation avec la néotectonique. Rev Géol Dynam Géog Phys 21:29–40Google Scholar
  47. Exadaktylos GE, Vardoulakis I, Stavropoulou MC, Tsombos P (2003) Analogue and numerical modeling of normal fault patterns produced due to slip along a detachment zone. Tectonphysics 376:117–134CrossRefGoogle Scholar
  48. Flerit F, Armijo R, King G, Meyer B (2004) The mechanical interaction between the propagating North Anatolian Fault and the back-arc extension in the Aegean. Earth Planet Sci Lett 224:347–362CrossRefGoogle Scholar
  49. Flotté N, Sorel D, Müller C, Tensi J (2005) Along strike changes in the structural evolution over a brittle detachment fault, example of the Pleistocene Corinth-Patras rift (Greece). Tectonophysics 403(2005):77–94CrossRefGoogle Scholar
  50. Ford M, Williams EA, Malartre F, Popescu SM (2007) Stratigraphic architecture, sedimentology and structure of the Vouraikos Gilbert-type delta, Gulf of Corinth, Greece. In: Nichols GJ, Williams EA, Paola C (eds) Sedimentary processes, environments and basins: a tribute to Peter Friend, vol 38, pp 49–90 (Spec Publ Int Assoc Sedimentol)Google Scholar
  51. Ford M, Rohais S, Williams EA, Bourlange S, Jousselin D, Backert N, Malartre F (2013) Tectono-sedimentary evolution of the western Corinth rift (Central Greece). Basin Res 25:3–25. doi: 10.1111/j.1365-2117.2012.00550.x CrossRefGoogle Scholar
  52. Fytikas M, Innocenti F, Manetti P, Mazzuoli R, Peccerilo A, Villari L (1984) Tertiaty to quaternary evolution of volcanism in the Aegean region. Geol Soc London Spec Publ 17:687–699Google Scholar
  53. Gautier P, Brun JP (1994) Ductile crust exhumation and extensional detachments in the central Aegean (Cyclades and Evvia islands). Geodin Acta 7(2):57–85CrossRefGoogle Scholar
  54. Gautier P, Brun JP, Moriceau R, Sokoutis D, Martinod J, Jolivet L (1999) Timing kinematics and cause of the Aegean extension: a scenario based on a comparison with simple analogue experiments. Tectonophysics 315:31–72CrossRefGoogle Scholar
  55. Gawthorpe RL, Leeder MR (2000) Tectono-sedimentary evolution of active extensional basins. Basin Res 12(3–4):195–218CrossRefGoogle Scholar
  56. Gawthorpe RL, Fraser AJ, Collier RELL (1994) Sequence stratigraphy in active extensional basins: implication for the interpretation of ancient basin-fills. Mar Petrol Geol 11(6):642–658CrossRefGoogle Scholar
  57. Ghisetti F, Vezzani L (2004) Fault segmentation in the Gulf of Corinth (Greece) constrained by patterns of Pleistocene sedimentation. Comptes Rendus Geosci 336:243–249CrossRefGoogle Scholar
  58. Ghisetti F, Vezzani L (2005) Inherited structural controls on normal fault architecture in the Gulf of Corinth (Greece). Tectonics, vol 24 doi: 10.1029/2004TC001696
  59. Ghisetti F, Barchi M, Bally AW, Moretti I, Vezzani L (1993) Conflicting balanced structural section across the Central Apennines (Italy): problems and implications. In: Spencer AM (ed) Generation, accumulation and production of Europe’s hydrocarbons III, vol 3. European Association of Petroleum Geoscience, Special Publication, pp 219–231Google Scholar
  60. Gianni G, Navarrete C, Orts D, Tobal J, Folguera A, Giménez M (2015) Patagonian broken foreland and related synorogenic rifting: the origin of the Chubut Group Basin. Tectonophysics. doi: 10.1016/j.tecto.2015.03.006 Google Scholar
  61. Goldsworthy M, Jackson J (2001) Migration of activity within normal fault systems: examples from the quaternary of mainland Greece. J Struct Geol 23:489–506CrossRefGoogle Scholar
  62. Goldsworthy M, Jackson J, Haines J (2002) The continuity of active fault systems in Greece. Geophys J Int 148:596–618. doi: 10.1046/j.1365-246X.2002.01609.x CrossRefGoogle Scholar
  63. Goodliffe A, Taylor B (2014) Raw multi-channel seismic shot data from the Gulf of Corinth acquired during R/V Maurice Ewing expedition EW0108 (2001). Integr Earth Data Appl (IEDA). doi: 10.1594/IEDA/306914 Google Scholar
  64. Gupta S, Cowie PA, Dawers NH, Underhill JR (1998) A mechanism to explain rift basin subsidence and stratigraphic patterns through fault array evolution. Geology 26:595–598Google Scholar
  65. Hadler H, Vött A, Koster B, Mathes-Schmidt M, Mattern T, Ntageretzis K, Reicherter K, Sakellariou D, Willershäuser T (2011) Lechaion, the ancient harbour of Corinth (Peloponnese, Greece) destroyed by tsunamigenic impact. In: Grützner C, Pérez-López R, Fernández Steeger T, Papanikolaou I, Reicherter K, Silva PG, Vött A (eds) Earthquake Geology and archaeology: science, society and critical facilities. proceedings of the 2nd INQUA-IGCP-567 international workshop on active tectonics, earthquake geology, archaeology and engineering, Sept 19–24 2011, Corinth (Greece), ISBN: 978–960-466-093-3, 70–73Google Scholar
  66. Hadler H, Kissas K, Koster B, Mathes-Schmidt M, Mattern T, Ntageretzis K, Reicherter K, Willershäuser T, Vött A (2013) Multiple late-Holocene tsunami landfall in the eastern Gulf of Corinth recorded in the palaeotsunami geo-archive at Lechaion, harbour of ancient Corinth (Peloponnese, Greece). Z Geomorph 57(4):1–42 NF SupplCrossRefGoogle Scholar
  67. Hemelsdaël R, Ford M (2016) Relay zone evolution: a history of repeated fault propagation and linkage, central Corinth rift. Basin Res, Greece. doi: 10.1111/bre.12101 Google Scholar
  68. Heuret A, Lallemand S (2005) Plate motions, slab dynamics and back-arc extension. Phys Earth Planet Inter 149:31–51CrossRefGoogle Scholar
  69. Higgs B (1988) Syn-sedimentary structural controls on basin deformation in the Gulf of Corinth, Greece. Basin Res 1:155–165CrossRefGoogle Scholar
  70. Horvath F, Berckhemer H (1982) Mediterranean back-arc basins. In: Berckhemer H, Hsü KJ (eds) Alpine-Mediterranean geodynamics. Geodynam Res 7:609–620Google Scholar
  71. I.G.R.S.-I.F.P. (1966) Etude Géologique de l’Epire (Grèce Nord-occidentale). Technip. Paris, p. 306, pl. 9Google Scholar
  72. Jackson J (1994) Active tectonics of the Aegean region. Annu Rev Earth Planet Sci 22:239–271CrossRefGoogle Scholar
  73. Jacobshagen V, Durr S, Kockel F, Kopp KO, Kowalczyk G, Berckhemer H, Buttner D (1978) Structure and geodynamic evolution of the Aegean region. In: Closs H, Roeder D, Schmidt KE (eds) Alpes, Apennines, Hellenides. Verlagsbuchhandlung, Stuttgart, Schweizerbart’sche, pp 537–564Google Scholar
  74. Jolivet L (2001) A comparison of geodetic and finite strain pattern in the Aegean, geodynamic implications. Earth Planet Sci Lett 187:95–104CrossRefGoogle Scholar
  75. Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa–Eurasia collision. Tectonics 19(6):1095–1106Google Scholar
  76. Jolivet L, Brun JP, Gautier P, Lallemeant S, Patriat M (1994) 3D kinematics of extension in the Aegean region from the early Miocene to the present, insights from the ductile crust. Bull Soc Geol Fr 165(3):195–209Google Scholar
  77. Jolivet L, Brun JP (2010) Cenozoic geodynamic evolution of the Aegean region. Int J Earth Science 99:109–138. doi: 10.1007/s00531-008-0366-4
  78. Jolivet L, Labrousse L, Agard P, Lacombe O, Bailly V, Lecomte E, Mouthereau F, Mehl C (2010a) Corinth rifting and shallow-dipping detachments, clues from the Corinth rift and the Aegean. Tectonophysics 483:287–304. doi: 10.1016/j.tecto.2009.11.001 CrossRefGoogle Scholar
  79. Jolivet L, Trotet F, Monié P, Vidal O, Goffé B, Labrousse L, Agard P, Ghorbal B (2010b) Along-strike variations of P-T conditions in accretionary wedges and synorogenic extension, the HP-LT phyllite-quartzite nappe in crete and the Peloponnese. Tectonophysics 480:133–148. doi: 10.1016/j.tecto.2009.10.002 CrossRefGoogle Scholar
  80. Jolivet L, Menant A, Sternai P, Rabillard A, Arbaret L, et al (2015) The geological signature of a slab tear below the Aegean. Tectonophysics 659:166–182. doi: 10.1016/j.tecto.2015.08.004
  81. Kamberis E, Pavlopoulos A, Tsaila-Monopolis S, Sotiropoulos S, Ioakim C (2005) Paleogene deep-water sedimentation and paleogeography of foreland basins in the NW Peloponnese (Greece). Geol Carpath 56:503–515Google Scholar
  82. Kapetanidis V, Deschamps A, Papadimitriou P, Matrullo E, Karakonstantis A, Bozionelos G, Kaviris G, Serpetsidaki A, Lyon-Caen H, Voulgaris N, Bernard P, Sokos E, Makropoulos K (2015) The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults. Geophys J Int 202:2044–2073CrossRefGoogle Scholar
  83. Karakitsios V (2013) Western Greece and Ionian Sea petroleum systems. AAPG Bull 97(9):1567–1595CrossRefGoogle Scholar
  84. Karakitsios V, Rigakis N (2007) Evolution and petroleum potential of western Greece. J Petrol Geol 30(3):197–218. doi: 10.1111/j.1747-5457.2007.00197.x CrossRefGoogle Scholar
  85. Karner GD, Driscoll NW (1999) Tectonic and stratigraphic development of the West African and eastern Brazilian Margins: insights from quantitative basin modelling. In: Cameron NR, Bate RH, Clure VS (eds) The oil and gas habitats of the South Atlantic. Geol Soc Lond 153:11–40 (Spec Publ)Google Scholar
  86. Keraudren B (1970) Les formations quaternaires marines de la Grèce. PhD thesis, Bull Mus Anthrop Préhist Monaco 16:5–153Google Scholar
  87. Keraudren B (1971) Les formations quaternaires marines de la Grèce. PhD thesis, Bull Mus Anthrop Préhist Monaco 17:87–169Google Scholar
  88. Keraudren B (1972) Les formations quaternaires marines de la Grèce. PhD thesis, Bull Mus Anthrop Préhist Monaco 18:223–270Google Scholar
  89. Keraudren B, Sorel D (1987) The terraces of Corinth (Greece): a detailed record of eustatic sea level variations during the last 500 000 years. Mar Geol 77(1–2):99–107CrossRefGoogle Scholar
  90. Kershaw S, Guo L (2003) Pleistocene cyanobacterial mounds in the Perachora Peninsula, Gulf of Corinth, Greece: structure and applications to interpreting sea-level history and terrace sequences in an unstable tectonic setting. Palaeogeogr Palaeoclimatol Palaeoecol 193:503–514CrossRefGoogle Scholar
  91. Kershaw S, Guo L, Braga JC (2005) A Holocene coral–algal reef at Mavra Litharia, Gulf of Corinth, Greece: structure, history and applications in relative sea-level change. Mar Geol 215:171–192CrossRefGoogle Scholar
  92. Kilias AA, Tranos MD, Orozco M, Alonso-Chaves FM, Soto GI (2002) Extensional collapse of the Hellenides: a review. Revista de la Sociedad Geológica de España 15(3–4):129–139Google Scholar
  93. King GCP, Ouyang ZX, Papadimitrioy P, Deschamps A, Gagnepain J, Houseman G, Jackson JA, Soufleris C, Virieux J (1985) The evolution of the Gulf of Corinth (Greece): an aftershock study of the 1981 earthquakes. Geophys J R Astr Soc 80:677–683CrossRefGoogle Scholar
  94. Kokkalas S, Xypolias P, Koukouvelas I, Doutsos T (2006) Postcollisional contractional and extensional deformation in the Aegean region. Spe Pap Geol Soc Am 409:97–123Google Scholar
  95. Kontopoulos N, Doutsos T (1985) Sedimentology and tectonics of the Antirion area (Western Greece). Bull Geol Soc Ital 104:479–489Google Scholar
  96. Koutsouveli A, Mettos A, Tsapralis V, Tsaila-Monopolis ST, Ioakim CH, Mavrides A (1989) Geological map of Greece, Xylokastro sheet Scale 1:50 000. Institute of Geology and Mineral Exploration, AthensGoogle Scholar
  97. Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:625–655CrossRefGoogle Scholar
  98. Kydonakis K, Brun JP, Sokoutis D (2015) North Aegean core complexes, the gravity spreading of a thrust wedge. J Geophys Res Am Geophys Union 120(1):595–616. doi: 10.1002/2014JB011601
  99. Le Pichon X, Angelier J (1979) The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60:1–42CrossRefGoogle Scholar
  100. Le Pourhiet L, Burov E, Moretti I (2003) Initial crustal thickness geometry controls on the extension in a back arc domain: case of the Gulf of Corinth. Tectonics, vol 22(4). doi: 10.1029/2002TC001433
  101. Le Pourhiet L, Burov E, Moretti I (2004) Rifting through a stack of inhomogeneous thrusts (the dipping pie concept). Tectonics, vol 23 (TC4005). doi: 10.1029/2003TC001584
  102. Leeder MR, Mack GH (2007) Basin-fill incision, Rio Grande and Gulf of Corinth rifts: convergent response to climatic and tectonic drivers. In: Nichols G, Williams E, Paola C (eds) Sedimentary processes, environments and basins. Blackwell Publishing, Malden, pp 9–28Google Scholar
  103. Leeder MR, McNeill LC, Collier REL, Portman C, Rowe PJ, Andrews JE (2003) Corinth rift margin uplift: new evidence from late quaternary marine shorelines. Geophys Res Lett 30(12):13–14CrossRefGoogle Scholar
  104. Leeder MR, Mack GH, Brasier AT, Parrish RR, McIntosh WC, Andrews JE, Duermeijer CE (2008) Late-Pliocene timing of Corinth (Greece) rift-margin fault migration. Earth Planet Sci Lett 274:132–141. doi: 10.1016/j.epsl.2008.07.006 CrossRefGoogle Scholar
  105. Leeder MR, Mark DF, Gawthorpe RL, Kranis H, Loveless S, Pedentchouk N, Skourtsos E, Turner J, Andrews JE, Stamatakis M (2012) A ‘great deepening’: chronology of rift climax, Corinth rift, Greece. Geology 40:999–1002CrossRefGoogle Scholar
  106. Leroy S, Razin P, Autin J, Bache F, d’Acremont E, Watremez L, Robinet J, Baurion C, Denèle Y, Bellahsen N, Lucazeau F, Rolandone F, Rouzo S, Serra Kiel J, Robin C et al. (2012) From rifting to oceanic spreading in the Gulf of Aden: a synthesis. Arab J Geosci 5:859–901. doi: 10.1007/s12517-011-0475-4
  107. Lister GS, Banga G, Feenstra A (1984) Metamorphic core complexes of cordilleran type in the Cyclades, Aegean Sea. Greece Geol 12:221–225Google Scholar
  108. Loftus L, Tsoflias P, Yannetakis CP (1971) Geological map of Greece, Nafpaktos sheet, scale 1:50 000. Institute of Geology and Mineral Exploration, AthensGoogle Scholar
  109. Lohr T, Underhill JR (2015) Role of rift transection and punctuated subsidence in the development of the North Falkland Basin. Petrol Geosci 21:85–110. doi: 10.1144/petgeo2014-050 CrossRefGoogle Scholar
  110. Lykousis V, Sakellariou D, Papanikolaou D (1998) Sequence stratigraphy in the northern margin of the Gulf of Corinth: implications to upper quaternary basin evolution. Bull Geol Soc Greece 32:157–164Google Scholar
  111. Lykousis V, Sakellariou D, Moretti I, Kaberi H (2007) Late quaternary basin evolution of the Gulf of Corinth: sequence stratigraphy, sedimentation, fault-slip and subsidence rates. Tectonophysics 440:29–51CrossRefGoogle Scholar
  112. Lyon-caen H, Papadimitriou P, Deschamps A, Bernard P, Makropoulos K, Pacchiani F, Patau G (2004) First results of the CRLN seismic network in the western Corinth Rift: evidence for old-fault reactivation. CRG 336:343–351. doi: 10.1016/j.crte.2003.12.004 CrossRefGoogle Scholar
  113. Maroukian H, Gaki-Papanastassiou K, Karymbalis E, Vouvalidis K, Pavlopoulos K, Papanastassiou D, Albanakis K (2008) Morphotectonic control on drainage network evolution in the Perachora Peninsula, Greece. Geomorphology 102:81–92Google Scholar
  114. Martinod J, Husson L, Roperch P, Guillaume B, Espurt N (2010) Horizontal subduction zones, convergence velocity and building of the Andes. EPSL 299:299–309CrossRefGoogle Scholar
  115. Mattioni L, Le Pourhiet L, Moretti I (2006) Extension through a heterogeneous crust: new insight from analogue modelling. J Geol Soc Lond, Special publication n° 253:213–231Google Scholar
  116. McKenzie D (1978) Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophys J R Astr Soc 55:217–254CrossRefGoogle Scholar
  117. McNeill LC, Collier REL (2004) Uplift and slip rates of the Eastern Eliki fault segment, Gulf ofCorinth, Greece, inferred from Holocene and Pleistocene terraces. J Geol Soc Lond 161:81–92CrossRefGoogle Scholar
  118. McNeill LC, Cotterill CJ, Henstock TJ, Bull JM, Stefatos A, Collier REL, Papatheoderou G, Ferentinos G, Hicks SE (2005) Active faulting within the offshore western gulf of Corinth, Greece: implications for models of continental rift deformation. Geology 33:241–244CrossRefGoogle Scholar
  119. McNeill LC, Cotterill CJ, Bull JM, Henstock TJ, Bell R, Stefatos A (2007) Geometry and slip rate of the Aigion fault, a young normal fault system in theWestern Gulf of Corinth. Geology 35:355–358CrossRefGoogle Scholar
  120. McNeill L, Sakellariou D, Nixon C (2014) Drilling to resolve the evolution of the Corinth Rift, Eos. Trans Am Geophys Union 95(20):170–170. doi: 10.1002/2014EO200009 CrossRefGoogle Scholar
  121. Micarelli L, Moretti I, Daniel JM (2003) Structural properties of rift-related normal faults: the case study of the Gulf of Corinth—Greece. J Geodynam 36:275–303CrossRefGoogle Scholar
  122. Moretti I, Delhomme JP, Cornet F, Bernard P (2002) In: Scmidt-Hattenberger C, Borm G (eds) The Corinth rift laboratory: monitoring of actives faults. First Break 20(2)Google Scholar
  123. Moretti I, Sakellariou D, Lykousis V, Micarelli L (2003) The Gulf of Corinth: an active half graben? J Geodyn 36:323–340CrossRefGoogle Scholar
  124. Moretti I, Lykoussis V, Sakellariou D, Reynaud JY, Benziane B, Prinzhoffer A (2004) Sedimentation and subsidence rate in the Gulf of Corinth: what we learn from the Marion Dufresne’s long-piston coring. C R Geosci 336:291–299CrossRefGoogle Scholar
  125. Muntzos T (1992) Palyno- und Paläoklima-Stratigraphie der pliozänen und altpleistozänen Sedimente der nördlichen und nordwestlichen Peloponnes (Hellas). Newslett Stratigr 27(1–2):71–91Google Scholar
  126. Nixon CW et al (2016) Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece. Tectonics, vol 35, doi: 10.1002/2015TC004026
  127. Nürnberg D, Müller RD (1991) The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics 191:27–53CrossRefGoogle Scholar
  128. Nyst M, Thatcher W (2004) New constraints on the active tectonic deformation of the Aegean. J Geophys Res 109:B11406. doi: 10.1029/2003JB002830 CrossRefGoogle Scholar
  129. Ori GG (1989) Geologic history of the extensional basin of the gulf of Corinth (?Miocene-Pleistocene), Greece. Geology 17:918–921CrossRefGoogle Scholar
  130. Ori GG, Roveri M, Nichols G (1991) Architectural patterns in large-scale Gilbert-type delta complexes, Pleistocene, Gulf of Corinth, Greece. In: Miall AD, Tyler N (eds) The three dimensional facies architecture if terrigenous clastic sediments and its implications for hydrocarbon discovery and recovery. SEPM, pp 207–216 (Concept in Sedimentology and Paleontology)Google Scholar
  131. Palyvos N, Sorel D, Lemeille F, Mancini M, Pantosti D, Julia R, Triantaphyllou M, De Martini P (2007) Review and new data on uplift rates at the W termination of the Corinth Rift and the NE Rion graben area (Achaia, NW Peloponnesos). Bull Soc Geol Greece 40:412–424Google Scholar
  132. Pángaro F, Ramos VA (2012) Paleozoic crustal blocks of onshore and offshore central Argentina: new pieces of the southwestern Gondwana collage and their role in the accretion of Patagonia and the evolution of Mesozoic south Atlantic sedimentary basins. Mar Petrol Geol 37:162–183CrossRefGoogle Scholar
  133. Pantopoulos G, Zelilidis A (2014) Eocene to early oligocene turbidite sedimentation in the SE Aegean (Karpathos Island, SE Greece): stratigraphy, facies analysis, nannofossil study, and possible hydrocarbon potential. Turk J Earth Sci 23:31–52. doi: 10.3906/yer-1204-8 CrossRefGoogle Scholar
  134. Papanikolaou D, Royden L (2007) Disruption of the Hellenic arc, late Miocene extensional detachment faults and steep pliocene–quaternary normal faults—or what happened at Corinth? Tectonics 26:TC5003
  135. Papanikolaou D, Lykoussis V, Chronis G, Pavlakis P (1988) A comparative study of neotectonic basins across the Hellenic Arc: the Messiniakos, Argolikos and Southern Evoikos Gulfs. Basin Res 1:167–176CrossRefGoogle Scholar
  136. Papanikolaou D, Logos E, Lozios S, Sideris C (1996) Geological map of Greece, Korinthos sheet, scale 1:100 000, European center on prevention and forecasting of earthquakes, earthquake planning and protection organization and tectonic committee of the geological society of Greece, AthensGoogle Scholar
  137. Papanikolaou D, Gouliotis L, Triantaphyllou M (2009) The Itea‐Amfissa detachment: a pre‐Corinth rift Miocene extensional structure in central Greece. In: van Hinsbergen DJJ, Edwards MA, Govers R (eds) Collision and collapse at the Africa‐Arabia‐Eurasia subduction zone. Geol Soc Spec Publ 311:293–310Google Scholar
  138. Papastamatiou I, Tataris A, Katsikatsos G, Maragoudakis N, Kallergis G, Elefteriou A, Zachos K (1962) Geological map of Greece, Galaxidion sheet, scale 1:50 000. Institute of Geology and Mineral Exploration, AthensGoogle Scholar
  139. Paraschoudis B, Machairas G (1977) Geological map of Greece, Amygdalea sheet, scale 1:50 000. Institute of Geology and Mining Research, Athens 1977Google Scholar
  140. Pearce FD, Rondenay S, Sachpazi M, Charalampakis M, Royden LH (2012) Seismic investigation of the transition from continental to oceanic subduction along the western Hellenic subduction zone. J Geophys Res 117 no. B7.  
  141. Pe-Piper G, Piper DJW (2007) Neogene back-arc volcanism of the Aegean: new insights into the relationship between magmatism and tectonics. In: Beccaluva L, Bianchini G (eds) Cenozoic volcanism in the Mediterranean area. Geological Society of America, pp 17–31. doi: 10.1130/2007.2418(02) (Geol Soc Am Spec Paper)
  142. Perissoratis C, Mitropoulos D, Angelopoulos L (1986) Marine geological research at the eastern Corinthiakos Gulf. Geol geophys Res Special Issue, IGME, Athens 381–401Google Scholar
  143. Perissoratis C, Piper DJW, Lykousis V (2000) Alternating marine and lacustrine edimentation during late quaternary in the Gulf of Corinth rift basin, central Greece. Mar Geol 167:391–411. doi: 10.1016/S0025-3227(00)00038-4 CrossRefGoogle Scholar
  144. Philippson A (1890) Der Isthmus Von Korinth, vol 25. Zeitschrift der Gesselshaft fur Erdkunde, Berlin, pp. 1–98Google Scholar
  145. Pik R, Marty B (2009) Helium isotopic signature of modern and fossil fluids associated with the Corinth rift fault zone (Greece): implication for fault connectivity in the lower crust. Chem Geol 266(1–2):67–75CrossRefGoogle Scholar
  146. Portman C, Andrews JE, Rowe PJ, Leeder MR, Hoogewerff J (2005) Submarine-spring controlled calcification and growth of spectacular Rivularia bioherms: late Pleistocene (MIS 5e), Gulf of Corinth, Greece. Sedimentology 52:441–465CrossRefGoogle Scholar
  147. Poulimenos G, Zelilidis A, Kontopoulos N, Doutsos T (1993) Geometry of trapezoidal fan deltas and their relationship to extensional faulting along the south-western active margins of the Corinth rift, Greece. Basins Res 5:179–192CrossRefGoogle Scholar
  148. Rangel HD, Carminatti M (2000) Rift lake stratigraphy of the Lagoa Feia formation, Campos basin, Brazil, lake basins through space and time. Am Assoc Petrol Geol Stud Geol 46:225–244Google Scholar
  149. Rigo A, Lyon Caen H, Armijo R, Deschamps A, Hatzfeld D, Makioupoulos K, Papadimitriou P, Kassaras I (1996) A microseismic study of the western part of the Gulf of Corinth [Greece]: implications for the large-scale normal faulting mechanisms. Geophys J Int 126:663–688CrossRefGoogle Scholar
  150. Roberts GP, Koukouvelas I (1996) Structural and seismological segmentation of the gulf of Corinth fault system: implication for models of fault growth. Annali di geofisica XXXIX(3):619–646Google Scholar
  151. Rögl F, Bernor RL, Dermitzakis MD, Müller C, Stancheva M (1991) On the Pontian correlation in the Aegean (Aegina Island). Newsl Stratigr 24:137–158CrossRefGoogle Scholar
  152. Rohais S, Eschard R, Ford M, Guillocheau F, Moretti I (2007a) Stratigraphic architecture of the Plio-Pleistocene infi ll of the Corinth rift: implications for its structural evolution. Tectonophysics 440:5–28. doi: 10.1016/j.tecto.2006.11.006 CrossRefGoogle Scholar
  153. Rohais S, Joannin S, Colin JP, Suc JP, Guillocheau F, Eschard R (2007b) Age and environmental evolution of the syn-rift fill of the southern coast of the gulf of Corinth (Akrata-Derveni region, Greece). Bull Soc Géol Fr 178:231–243CrossRefGoogle Scholar
  154. Rohais S, Eschard R, Guillocheau F (2008) Depositional model and stratigraphic architecture of rift climax Gilbert-type fan deltas (Gulf of Corinth, Greece). Sediment Geol 210:132–145. doi: 10.1016/j.sedgeo.2008.08.001 CrossRefGoogle Scholar
  155. Rohais S, Barrois A, Colletta B, Moretti I (2016) Pre-salt to salt stratigraphic architecture in a rift basin: insights from a basin-scale study of the Gulf of Suez (Egypt). Arab J Geosci 9:317. doi: 10.1007/s12517-016-2327-8
  156. Royden LH, Papanikolaou D (2011) Slab segmentation and late Cenozoic disruption of the Hellenic arc. Geochem Geophys Geosyst 12:Q03010. doi: 10.1029/2010GC003280 CrossRefGoogle Scholar
  157. Sachpazi M, Clément C, Laigle M, Hirn A, Roussos N (2003) Rift structure, evolution, and earthquakes in the Gulf of Corinth, from reflection seismic images. Earth 216:243–257Google Scholar
  158. Sachpazi M et al (2007) Moho topography under central Greece and its compensation by Pn time-terms for accurate location of hypocenters: the example of the Gulf of Corinth 1995 Aigion earthquake. Tectonophyiscs 440:53–65CrossRefGoogle Scholar
  159. Sakellariou D, Lykousis V, Papanikolaou D (1998) Neotectonic structure and evolution of the Gulf of Alkyonides, central Greece. Bull Geol Soc Greece 32:241–250Google Scholar
  160. Sakellariou D, Lykousis V, Alexandri S, Kaberi H, Rousakis G, Nomikou P, Georgiou P, Ballas D (2007) Faulting, seismic-stratigraphic architecture and late quaternary evolution of the Gulf of Alkyonides Basin-East Gulf of Corinth, Central Greece. Basin Res 19:273–295CrossRefGoogle Scholar
  161. Schattner U (2010) What triggered the early-to-mid Pleistocene tectonic transition across the entire eastern Mediterranean? Earth Planet Sci Lett 289:539–548. doi: 10.1016/j.epsl.2009.11.048 CrossRefGoogle Scholar
  162. Sherkati S, Molinaro M, Frizon de Lamotte D, Letouzey J (2005) Detachment folding in the Central and eastern Zagros fold-belt (Iran): salt mobility, multiple detachments and late basemebnt control. JSG 27(9):1680–1696CrossRefGoogle Scholar
  163. Skourtsos E, Kranis H (2009), Structure and evolution of the western Corinth rift, through new field data from the Northern Peloponnesus. Geol Soc Lond Spec Publ 321(1):119–138, doi: 10.1144/SP321.6
  164. Sokos E, Zahradník J, Kiratzi A, Janský J, Gallovič F, Novotny O, Kostelecký J, Serpetsidaki A, Tselentis G-A (2012) The January 2010 Efpalio earthquake sequence in the western Corinth Gulf (Greece). Tectonophysics 530–531:299–309Google Scholar
  165. Sorel D (2000) A Pleistocene and still active detachment fault and the origin of Corinth Patras rift, Greece. Geology 28:83–86CrossRefGoogle Scholar
  166. Sotiropoulos S, Kamberis E, Triantaphyllou M, Doutsos T (2003) Thrust sequences in the central part of the external Hellenides. Geol Mag 140(6):661–68CrossRefGoogle Scholar
  167. Stefatos A, Papatheodorou G, Ferentinos G, Leeder M, Collier REL (2002) Seismic reflection imaging of active offshore faults in the Gulf of Corinth: their seismotectonic significance. Basin Res 14(4):487–502. doi: 10.1046/j.1365-2117.2002.00176.x CrossRefGoogle Scholar
  168. Symeonidis N, Theothorou G, Schutt H, Velitzelos E (1987) Paleontological and stratigraphic observations in the area of Achaia and Etoloakarnania W-Greece. Ann Geol Pays Hell Athens 38:317–353Google Scholar
  169. Taylor B, Weiss JR, Goodliffe AM, Sachpazi M, Laigle M, Hirn A (2011) The structure, stratigraphy and evolution of the Gulf of Corinth rift, Greece. Geophys J Int 185:1189–1219. doi: 10.1111/j.1365-246X.2011.05014.x CrossRefGoogle Scholar
  170. Tiberi C, Diament M, Lyon-Caen H, King T (2001) Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data. Geophys J Int 145:797–808Google Scholar
  171. Tselentis GA, Makiopoulos K (1986) Rates of crustal deformation in the Gulf of Corinth [central Greece] as determined from seismicity. Tectonophysics 24:55–61CrossRefGoogle Scholar
  172. Tsodoulos IM, Koukouvelas IK, Pavlides S (2008) Tectonic geomorphology of the easternmost extension of the Gulf of Corinth (Beotia, Central Greece), Tectonophysics 453:211–232Google Scholar
  173. Tsoflias P, Fleury JJ, Bizon G, Stoppel D, Symeonides N, Katsikatsos G (1984) Geological map of Greece, Khalandrista sheet, scale 1:50 000. Institute of Geology and Mineral Exploration, AthensGoogle Scholar
  174. Tsoflias P, Fleury JJ, Ioakim CH, Mavridis AN (1993) Geological map of Greece, Derveni sheet, scale 1:50 000. Institute of Geology and Mineral Exploration, AthensGoogle Scholar
  175. West BP, May SR, Eastwood JE, Rossen C (2002) Interactive seismic facies classification using textural attributes and neural networks. Lead Edge, pp 1042–1049, Oct 2002Google Scholar
  176. Westaway R (2002) The Quaternary evolution of the Gulf of Corinth, central Greece: coupling between surface processes and flow in the lower continental crust. Tectonophysics 348:269–318CrossRefGoogle Scholar
  177. Xypolias P, Doutsos T (2000) Kinematics of rock flow in a crustal-scale shear zone: implication for the orogenic evolution of the southwestern Hellenides. Geol Mag 137(1):81–96Google Scholar
  178. Zelilidis A (2000) Drainage evolution in a rifted basin, Corinth graben, Greece. Geomorphology 35:69–85CrossRefGoogle Scholar
  179. Zelilidis A (2003) The geometry of fan-deltas and related turbidites in narrow linear basin. Geol J 37:1–16Google Scholar
  180. Zelilidis A, Kontopoulos N (1996) Significance of fan deltas without toe-sets within rift and piggy-back basins: examples from the Corinth graben and the Meso-hellenic though, Central Greece. Sedimentology 43:253–262CrossRefGoogle Scholar
  181. Zelt BC, Taylor B, Weiss JR, Goodliffe AM, Sachpazi M, Hirn A (2004) Streamer tomography velocity models for the Gulf of Corinth and the Gulf of Itea, Greece. Geophys J Int 159:333–346CrossRefGoogle Scholar
  182. Zelt BC, Taylor B, Sachpazi M, Hirn A (2005) Crustal velocity and Moho structure beneath the Gulf of Corinth, Greece. Geophys J Int 162:257–268CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Direction GéosciencesIFPENRueil-Malmaison CedexFrance
  2. 2.Département Exploration et GéosciencesENGIE EPIParis La Défense CedexFrance

Personalised recommendations