Skip to main content

Structural and Stratigraphic Architecture of the Corinth Rift (Greece): An Integrated Onshore to Offshore Basin-Scale Synthesis

  • Chapter
  • First Online:
Lithosphere Dynamics and Sedimentary Basins of the Arabian Plate and Surrounding Areas

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

The overall rifting history of the Corinth basin in Greece is still debated due to (1) the lack of deep wells to constrain the offshore domain, (2) sparse dating available onshore and (3) the only few integrated basin-scale studies covering both offshore and onshore data providing an homogeneous overview of its stratigraphic architecture. This paper provides an update to the structural and stratigraphic architecture of the Corinth rift through the results of field mapping, geological and structural map synthesis, outcrop stratigraphic characterization and seismic sequence stratigraphic correlations. A comparison with the surrounding basins to extrapolate ages and a correlation between onshore stratigraphic architecture and offshore seismic stratigraphy in the Corinth rift are proposed to establish time lines of the key stages during the rift evolution, and its relationship with the previous Hellenic compressive phase and the Aegean back-arc opening eastward. The rift history can be subdivided into two major syn-rift phases. A Syn-rift 1 including (a) the rift initiation at around 5.3 Ma with continental to lacustrine sediments deposited in km-scale isolated depocenters. (b) The rift widening (ca. 5.3–3.0 Ma) combined with a rift propagation from east to west. First marine incursions were recorded along the Corinth Isthmus. At that time, the rift was still subdivided into numerous 2–10 km-wide depocenters controlled by active faults where continental to lacustrine deposits occurred. The depocenters progressively grew and became linked. (c) The Syn-rift 1 “climax” (ca. 3.0–2.6 Ma) with 15–25 km-long fault segments subdivided the rift into 5–10 km wide fault blocks. Sedimentation was characterized by thick alluvial fans and large Gilbert-type deltas along the active fault segments and a starved basin along the basin axis. Marine connection with the Mediterranean Sea was dominantly established thought the Corinth Isthmus. (d) The Syn-rift 1 phase ended with a basinward fault migration phase (ca. 2.6–0.8 Ma) characterized by a progressive demise of the rift border fault and a rapid forced regressive trend recorded by the large Gilbert-type deltas. Bathymetry continued to increase along the basin axis. An additional phase of rifting (Syn-rift 2) ensued, and was characterized by the Peloponnesus margin uplift combined with an increase of both tectonic and total subsidences in the basin axis (ca. 0.8 Ma to present day). The depositional profile was shorter than during the previous stages, the rift progressively narrowed and the sedimentation rate strongly increased in the depocenter. The short lived duration of each phase and the peculiarity of the present phase are discussed in relation to the inherited structures and relative influence of the far field stress changes within the global context of the Hellenic subduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anastasakis G, Piper DJW (2005) Late neogene evolution of the western South Aegean volcanic arc: sedimentary imprint of volcanicity around Milos. Mar Geol 215(2005):135–158

    Article  Google Scholar 

  • Anastasakis G, Piper DJW, Dermitzakis MD, Karakitsios V (2006) Upper cenozoic stratigraphy and paleogeographic evolution of Myrtoon and adjacent basins, Aegean Sea, Greece. Mar Pet Geol 23:353–369

    Article  Google Scholar 

  • Armijo R, Meyer B, King GCP, Rigo A, Papanastassiou M (1996) Quaternary evolution of the Corinth rift and its implications for the late Cenozoic evolution of the Aegean. Geophys J Int 126:11–53

    Article  Google Scholar 

  • Armijo R, Meyer B, Hubert A, Barka A (1999) Westward propagation of the North Anatolian fault into the northern Aegean; timing and kinematics. Geology 27(3):267–270

    Article  Google Scholar 

  • Aronis G, Panayotides GR, Monopolis D, Morikis AN, Zachos K (1964) Geological map of Greece, Delfi Sheet, scale 1:50 000. Institute of Geology and Mineral Exploration, Athens

    Google Scholar 

  • Aubouin J (1959) Contribution à l’étude géologique de la Grèce septentrionale: les confins de l’Epire et de la Thessalie. (These, Paris, 1958). Ann Geol Pays Hell, Ire série, vol X, 483 p

    Google Scholar 

  • Aubouin J, Brunn JH, Celet P, Dercourt J, Godfriaux I, Mercier J (1963) Esquisse de la Géologie de la Grèce, Fallot memorial volume, Societe Geologique de France, pp 583–610

    Google Scholar 

  • Avallone A, Briole P, Agatza-Balodimou AM, Billiris H, Charade O, Mitsakaki C, Nercessian A, Papazissi K, Paradissis D, Veis G (2004) Analysis of eleven years of deformation measured by GPS in the Corinth rift laboratory area. Comptes Rendus Geosci 336(4–5):301–311. doi:10.1016/j.crte.2003.12.007

    Article  Google Scholar 

  • Beckers A, Hubert-Ferrari A, Beck C, Bodeux S, Tripsanas E, Sakellariou D, De Batist M (2015) Active faulting at the western tip of the Gulf of Corinth, Greece, from high-resolution seismic data. Mar Geol 360:55–69. doi:10.1016/j.margeo.2014.12.003

    Article  Google Scholar 

  • Bell RE, McNeill LC, Bull JM, Henstock TJ (2008) Evolution of the offshore western Gulf of Corinth. Geol Soc Am Bull 120:156–178

    Article  Google Scholar 

  • Bell RE, McNeill LC, Bull JM, Henstock TJ, Collier REL, Leeder MR (2009) Fault architecture, basin structure and evolution of the Gulf of Corinth rift, central Greece. Basin Res 21:824–855. doi:10.1111/j.1365-2117.2009.00401.x

    Article  Google Scholar 

  • Bell RE, McNeill LC, Henstock TJ, Bull JM (2011) Comparing extension on multiple time and depth scales in the Corinth rift Central Greece. Geophys J Int 186:463–470

    Article  Google Scholar 

  • Benedicto A, Plagnes V, Vergély P, Flotté N, Schultz RA (2008) Fault and fluid interaction in a rifted margin: integrated study of calcite-sealed fault-related structures (Southern Corinth margin). In: Wibberley CAJ, Kurz W, Imber J, Holdsworth RE, Collettini C (eds) The internal structure of fault zones: implications for mechanical and fluid-flow properties, vol 299. Geological Society, London, pp 257–275 (Special Publications)

    Google Scholar 

  • Bentham P, Collier REL, Gawthorpe RL, Leeder MR, Prossers S, Stark C (1991) Tectono-sedimentary development of an extensional basin: the Neogene Megara Basin, Greece. J Geol Soc Lond 148:923–934

    Article  Google Scholar 

  • Bernard P, Briole P, Meyer B, Lyon-Caen H, Gomez JM, Tiberi C, Berge C, Cattin R, Hatzfeld D, Lachet C, Lebrun B, Deschamps A, Courboulex F, Larroque C, Rigo A, Massonnet D, Papadimitriou P, Kassaras J, Diagourtas D, Makropoulos K (1997) The Ms = 6.2, June 15, 1995 Aigion earthquake (Greece): evidence for low angle normal faulting in the Corinth rift. J Seismol 1:131–150

    Article  Google Scholar 

  • Bernard P et al (2006) Seismicity, deformation and seismic hazard in the western rift of Corinth: new insights from the Corinth rift laboratory (CRL). Tectonophysics 426:7–30

    Article  Google Scholar 

  • Briole P, Rigo A, Lyon-Caen H, Ruegg JC, Papazissi K, Mitsakaki C, Balodimou A, Veis G, Hatzfield D, Deschamps A (2000) Active deformation of the Corinth Rift, Greece: results from repeated global positioning system surveys between 1990 and 1995. J Geophys Res 105:605–625

    Google Scholar 

  • Brooks M, Ferentinos G (1984) Tectonics and sedimentation in the Gulf of Corinth and the Zakynthos and Kefallinia channels, western Greece. Tectonophyiscs 101:25–54

    Article  Google Scholar 

  • Causse C, Moretti I, Ghisetti F, Eschard R, Micarelli L, Ghaleb B, Frank N (2004) Kinematics of the Corinth Gulf inferred from calcite dating and syntectonic sedimentary characteristics. C R Geosci 336:281–290

    Article  Google Scholar 

  • Chaboureau AC, Guillocheau F, Robin C, Rohais S, Moulin M, Aslanian D (2013) Paleogeographic evolution of the central segment of the South Atlantic during early cretaceous times: paleotopographic and geodynamic implications. Tectonophysics 604:191–223

    Article  Google Scholar 

  • Charalampakis M, Lykousis V, Sakellariou D, Papatheodorou G, Ferentinos G (2014) The tectono-sedimentary evolution of the Lechaion Gulf, the south eastern branch of the Corinth graben, Greece. Mar Geol 351:58–75. doi:10.1016/j.margeo.2014.03.014

    Article  Google Scholar 

  • Chéry J (2001) Core complex mechanics: from the gulf of Corinth to the Snake Range. Geology 29(5):439–442

    Article  Google Scholar 

  • Chouliaras G, Kassaras I, Kapetanidis V, Petrou P, Drakatos G (2015) Seismotectonic analysis of the 2013 seismic sequence at the western Corinth rift. J Geodynam 90:42–57. doi:10.1016/j.jog.2015.07.001

  • Clark SR, Stegman D, Müller RD (2008) Episodicity in back-arc tectonic regimes. Phys Earth Planet Inter 171:265–279. doi:10.1016/j.pepi.2008.04.01

  • Clement C, Sachpazi M, Charvis P, Graindorge D, Laigle M, Hirn A, Zafiropoulos G (2004) Reflection-refraction seismics in the Gulf of Corinth: hints at deep structure and control of the deep marine basin. Tectonophysics 391:85–95

    Article  Google Scholar 

  • Colletta B, LeQuellec P, Letouzey J, Moretti I (1988) Longitudinal evolution of the Suez rift structure (Egypt). Tectonophysics 153:221–233

    Article  Google Scholar 

  • Colletta B, Hebrard F, Letouzey J, Werner P, Rudkiewicz JL (1990) Tectonic style and crustal structure of the Eastern Cordillera (Colombia) from a balanced cross-section. In: Letouzey J (ed) Petroleum and tectonics in mobile belts. Editions Technip, Paris, pp 81–100

    Google Scholar 

  • Collier REL (1988) Sedimentary facies evolution in continental fault-bounded basins formed by crustal extension: the Corinth Basin, Greece. PhD thesis, University of Leeds

    Google Scholar 

  • Collier REL (1990) Eustatic and tectonic controls upon quaternary coastal sedimentation in the Corinth Basin, Greece. J Geol Soc 147:301–314

    Article  Google Scholar 

  • Collier REL, Dart CJ (1991) Neogene to quaternary rifting, sedimentation and uplift in the Corinth. J Geol Soc Lond 148:1049–1065

    Article  Google Scholar 

  • Collier REL, Leeder M, Trout M, Ferentinos G, Lyberis E, Papatheodorou G (2000) High sedimentation yields and cool wet winters: test of last glacial paleoclimates in the northern Mediterranean. Geology 28:999–1002

    Article  Google Scholar 

  • Console R, Carluccio R, Papadimitriou E, Karakostas V (2015) Synthetic earthquake catalogs simulating seismic activity in the Corinth Gulf, Greece, fault system, J Geophys Res Solid Earth, vol 120, doi:10.1002/2014JB011765

  • Danatsas I (1989) Die känozoischen Ostrakoden des NW- und N-Peloponnes und ihre stratigraphische, paläoökologische und paläogeographische Bedeutung. Inaug. Diss. Münster, 171

    Google Scholar 

  • Danatsas I (1994) Zur Entwicklung der miozänen-altpleitozänen Ostrakoden-Fauna des Korinth-Beckens, Griechenland. Münster. Forsch Geol Paläont 76:191–200

    Google Scholar 

  • Dart CJ, Collier REL, Gawthorpe RL, Keller JVA, Nichols G (1994) Sequence stratigraphy of (?) Pliocene-quaternary synrift, Gilbert-type fan deltas, northern Peloponnesos, Greece. Mar Petrol Geol 11:545–560

    Article  Google Scholar 

  • Demoulin A, Beckers A, Hubert-Ferrari A (2015) Patterns of quaternary uplift of the Corinth rift southern border (N. Peloponnese, Greece) revealed by fluvial landscape morphometry. Geomorphology 246:188–204

    Google Scholar 

  • Dercourt J (1964) Contribution à l’étude géologique du secteur du Péloponnèse septentrional. PhD thesis, University of Paris, pp 1–418

    Google Scholar 

  • Dercourt J, De Wever P, Fleury J (1976) Données sur le style tectonique de la nappe de Tripolitza en Peloponnese septentional (Grece). Bull Soc Geol Fr 7(28):317–326

    Google Scholar 

  • Desperet C (1913) Observations sur l’histoire géologique pliocène et quaternaire du golfe et de l’isthme de Corinthe. CR hebdomadaire des séances de l’Académie des Sciences 156

    Google Scholar 

  • Dewey JF, Sengör AMC (1979) Agean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geol Soc Am Bull 90:84–92

    Article  Google Scholar 

  • Doutsos T, Piper G, Boronkay K, Koukouvelas I (1993) Kinematics of the central Hellenides. Tectonics 12:936–953

    Google Scholar 

  • Doutsos T, Piper DJW (1990) Listric faulting, sedimentation, and morphological evolution of the quaternary eastern Corinth rift, Greece: first stages of continental rifting. Geol Soc Am Bull 102:812–829

    Article  Google Scholar 

  • Doutsos T, Kontopoulos N, Poulimenos G (1988) The Corinth-Patras rift as the initial stage of the continental fragmentation behind an active island arc [Greece]. Basin Res 1:177–190

    Article  Google Scholar 

  • Doutsos T, Koukouvelas I, Poulimenos G, Kokkalas S, Xypolias P, Skourlis K (2000) An exhumation model of the south Peloponnesus, Greece. Int J Earth Sci 89:350–365. doi:10.1007/s005310000087

    Article  Google Scholar 

  • Dufaure JJ (1975) Le relief du Péloponnèse. PhD thesis, Université Paris IV, France, p 1422

    Google Scholar 

  • Dufaure JJ, Bousquet B, Péchoux PY (1979) Contribution de la géomorphologie à la connaissance du Quaternaire continental grec, en relation avec la néotectonique. Rev Géol Dynam Géog Phys 21:29–40

    Google Scholar 

  • Exadaktylos GE, Vardoulakis I, Stavropoulou MC, Tsombos P (2003) Analogue and numerical modeling of normal fault patterns produced due to slip along a detachment zone. Tectonphysics 376:117–134

    Article  Google Scholar 

  • Flerit F, Armijo R, King G, Meyer B (2004) The mechanical interaction between the propagating North Anatolian Fault and the back-arc extension in the Aegean. Earth Planet Sci Lett 224:347–362

    Article  Google Scholar 

  • Flotté N, Sorel D, Müller C, Tensi J (2005) Along strike changes in the structural evolution over a brittle detachment fault, example of the Pleistocene Corinth-Patras rift (Greece). Tectonophysics 403(2005):77–94

    Article  Google Scholar 

  • Ford M, Williams EA, Malartre F, Popescu SM (2007) Stratigraphic architecture, sedimentology and structure of the Vouraikos Gilbert-type delta, Gulf of Corinth, Greece. In: Nichols GJ, Williams EA, Paola C (eds) Sedimentary processes, environments and basins: a tribute to Peter Friend, vol 38, pp 49–90 (Spec Publ Int Assoc Sedimentol)

    Google Scholar 

  • Ford M, Rohais S, Williams EA, Bourlange S, Jousselin D, Backert N, Malartre F (2013) Tectono-sedimentary evolution of the western Corinth rift (Central Greece). Basin Res 25:3–25. doi:10.1111/j.1365-2117.2012.00550.x

    Article  Google Scholar 

  • Fytikas M, Innocenti F, Manetti P, Mazzuoli R, Peccerilo A, Villari L (1984) Tertiaty to quaternary evolution of volcanism in the Aegean region. Geol Soc London Spec Publ 17:687–699

    Google Scholar 

  • Gautier P, Brun JP (1994) Ductile crust exhumation and extensional detachments in the central Aegean (Cyclades and Evvia islands). Geodin Acta 7(2):57–85

    Article  Google Scholar 

  • Gautier P, Brun JP, Moriceau R, Sokoutis D, Martinod J, Jolivet L (1999) Timing kinematics and cause of the Aegean extension: a scenario based on a comparison with simple analogue experiments. Tectonophysics 315:31–72

    Article  Google Scholar 

  • Gawthorpe RL, Leeder MR (2000) Tectono-sedimentary evolution of active extensional basins. Basin Res 12(3–4):195–218

    Article  Google Scholar 

  • Gawthorpe RL, Fraser AJ, Collier RELL (1994) Sequence stratigraphy in active extensional basins: implication for the interpretation of ancient basin-fills. Mar Petrol Geol 11(6):642–658

    Article  Google Scholar 

  • Ghisetti F, Vezzani L (2004) Fault segmentation in the Gulf of Corinth (Greece) constrained by patterns of Pleistocene sedimentation. Comptes Rendus Geosci 336:243–249

    Article  Google Scholar 

  • Ghisetti F, Vezzani L (2005) Inherited structural controls on normal fault architecture in the Gulf of Corinth (Greece). Tectonics, vol 24 doi:10.1029/2004TC001696

  • Ghisetti F, Barchi M, Bally AW, Moretti I, Vezzani L (1993) Conflicting balanced structural section across the Central Apennines (Italy): problems and implications. In: Spencer AM (ed) Generation, accumulation and production of Europe’s hydrocarbons III, vol 3. European Association of Petroleum Geoscience, Special Publication, pp 219–231

    Google Scholar 

  • Gianni G, Navarrete C, Orts D, Tobal J, Folguera A, Giménez M (2015) Patagonian broken foreland and related synorogenic rifting: the origin of the Chubut Group Basin. Tectonophysics. doi:10.1016/j.tecto.2015.03.006

    Google Scholar 

  • Goldsworthy M, Jackson J (2001) Migration of activity within normal fault systems: examples from the quaternary of mainland Greece. J Struct Geol 23:489–506

    Article  Google Scholar 

  • Goldsworthy M, Jackson J, Haines J (2002) The continuity of active fault systems in Greece. Geophys J Int 148:596–618. doi:10.1046/j.1365-246X.2002.01609.x

    Article  Google Scholar 

  • Goodliffe A, Taylor B (2014) Raw multi-channel seismic shot data from the Gulf of Corinth acquired during R/V Maurice Ewing expedition EW0108 (2001). Integr Earth Data Appl (IEDA). doi:10.1594/IEDA/306914

    Google Scholar 

  • Gupta S, Cowie PA, Dawers NH, Underhill JR (1998) A mechanism to explain rift basin subsidence and stratigraphic patterns through fault array evolution. Geology 26:595–598

    Google Scholar 

  • Hadler H, Vött A, Koster B, Mathes-Schmidt M, Mattern T, Ntageretzis K, Reicherter K, Sakellariou D, Willershäuser T (2011) Lechaion, the ancient harbour of Corinth (Peloponnese, Greece) destroyed by tsunamigenic impact. In: Grützner C, Pérez-López R, Fernández Steeger T, Papanikolaou I, Reicherter K, Silva PG, Vött A (eds) Earthquake Geology and archaeology: science, society and critical facilities. proceedings of the 2nd INQUA-IGCP-567 international workshop on active tectonics, earthquake geology, archaeology and engineering, Sept 19–24 2011, Corinth (Greece), ISBN: 978–960-466-093-3, 70–73

    Google Scholar 

  • Hadler H, Kissas K, Koster B, Mathes-Schmidt M, Mattern T, Ntageretzis K, Reicherter K, Willershäuser T, Vött A (2013) Multiple late-Holocene tsunami landfall in the eastern Gulf of Corinth recorded in the palaeotsunami geo-archive at Lechaion, harbour of ancient Corinth (Peloponnese, Greece). Z Geomorph 57(4):1–42 NF Suppl

    Article  Google Scholar 

  • Hemelsdaël R, Ford M (2016) Relay zone evolution: a history of repeated fault propagation and linkage, central Corinth rift. Basin Res, Greece. doi:10.1111/bre.12101

    Google Scholar 

  • Heuret A, Lallemand S (2005) Plate motions, slab dynamics and back-arc extension. Phys Earth Planet Inter 149:31–51

    Article  Google Scholar 

  • Higgs B (1988) Syn-sedimentary structural controls on basin deformation in the Gulf of Corinth, Greece. Basin Res 1:155–165

    Article  Google Scholar 

  • Horvath F, Berckhemer H (1982) Mediterranean back-arc basins. In: Berckhemer H, Hsü KJ (eds) Alpine-Mediterranean geodynamics. Geodynam Res 7:609–620

    Google Scholar 

  • I.G.R.S.-I.F.P. (1966) Etude Géologique de l’Epire (Grèce Nord-occidentale). Technip. Paris, p. 306, pl. 9

    Google Scholar 

  • Jackson J (1994) Active tectonics of the Aegean region. Annu Rev Earth Planet Sci 22:239–271

    Article  Google Scholar 

  • Jacobshagen V, Durr S, Kockel F, Kopp KO, Kowalczyk G, Berckhemer H, Buttner D (1978) Structure and geodynamic evolution of the Aegean region. In: Closs H, Roeder D, Schmidt KE (eds) Alpes, Apennines, Hellenides. Verlagsbuchhandlung, Stuttgart, Schweizerbart’sche, pp 537–564

    Google Scholar 

  • Jolivet L (2001) A comparison of geodetic and finite strain pattern in the Aegean, geodynamic implications. Earth Planet Sci Lett 187:95–104

    Article  Google Scholar 

  • Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa–Eurasia collision. Tectonics 19(6):1095–1106

    Google Scholar 

  • Jolivet L, Brun JP, Gautier P, Lallemeant S, Patriat M (1994) 3D kinematics of extension in the Aegean region from the early Miocene to the present, insights from the ductile crust. Bull Soc Geol Fr 165(3):195–209

    Google Scholar 

  • Jolivet L, Brun JP (2010) Cenozoic geodynamic evolution of the Aegean region. Int J Earth Science 99:109–138. doi:10.1007/s00531-008-0366-4

  • Jolivet L, Labrousse L, Agard P, Lacombe O, Bailly V, Lecomte E, Mouthereau F, Mehl C (2010a) Corinth rifting and shallow-dipping detachments, clues from the Corinth rift and the Aegean. Tectonophysics 483:287–304. doi:10.1016/j.tecto.2009.11.001

    Article  Google Scholar 

  • Jolivet L, Trotet F, Monié P, Vidal O, Goffé B, Labrousse L, Agard P, Ghorbal B (2010b) Along-strike variations of P-T conditions in accretionary wedges and synorogenic extension, the HP-LT phyllite-quartzite nappe in crete and the Peloponnese. Tectonophysics 480:133–148. doi:10.1016/j.tecto.2009.10.002

    Article  Google Scholar 

  • Jolivet L, Menant A, Sternai P, Rabillard A, Arbaret L, et al (2015) The geological signature of a slab tear below the Aegean. Tectonophysics 659:166–182. doi:10.1016/j.tecto.2015.08.004

  • Kamberis E, Pavlopoulos A, Tsaila-Monopolis S, Sotiropoulos S, Ioakim C (2005) Paleogene deep-water sedimentation and paleogeography of foreland basins in the NW Peloponnese (Greece). Geol Carpath 56:503–515

    Google Scholar 

  • Kapetanidis V, Deschamps A, Papadimitriou P, Matrullo E, Karakonstantis A, Bozionelos G, Kaviris G, Serpetsidaki A, Lyon-Caen H, Voulgaris N, Bernard P, Sokos E, Makropoulos K (2015) The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults. Geophys J Int 202:2044–2073

    Article  Google Scholar 

  • Karakitsios V (2013) Western Greece and Ionian Sea petroleum systems. AAPG Bull 97(9):1567–1595

    Article  Google Scholar 

  • Karakitsios V, Rigakis N (2007) Evolution and petroleum potential of western Greece. J Petrol Geol 30(3):197–218. doi:10.1111/j.1747-5457.2007.00197.x

    Article  Google Scholar 

  • Karner GD, Driscoll NW (1999) Tectonic and stratigraphic development of the West African and eastern Brazilian Margins: insights from quantitative basin modelling. In: Cameron NR, Bate RH, Clure VS (eds) The oil and gas habitats of the South Atlantic. Geol Soc Lond 153:11–40 (Spec Publ)

    Google Scholar 

  • Keraudren B (1970) Les formations quaternaires marines de la Grèce. PhD thesis, Bull Mus Anthrop Préhist Monaco 16:5–153

    Google Scholar 

  • Keraudren B (1971) Les formations quaternaires marines de la Grèce. PhD thesis, Bull Mus Anthrop Préhist Monaco 17:87–169

    Google Scholar 

  • Keraudren B (1972) Les formations quaternaires marines de la Grèce. PhD thesis, Bull Mus Anthrop Préhist Monaco 18:223–270

    Google Scholar 

  • Keraudren B, Sorel D (1987) The terraces of Corinth (Greece): a detailed record of eustatic sea level variations during the last 500 000 years. Mar Geol 77(1–2):99–107

    Article  Google Scholar 

  • Kershaw S, Guo L (2003) Pleistocene cyanobacterial mounds in the Perachora Peninsula, Gulf of Corinth, Greece: structure and applications to interpreting sea-level history and terrace sequences in an unstable tectonic setting. Palaeogeogr Palaeoclimatol Palaeoecol 193:503–514

    Article  Google Scholar 

  • Kershaw S, Guo L, Braga JC (2005) A Holocene coral–algal reef at Mavra Litharia, Gulf of Corinth, Greece: structure, history and applications in relative sea-level change. Mar Geol 215:171–192

    Article  Google Scholar 

  • Kilias AA, Tranos MD, Orozco M, Alonso-Chaves FM, Soto GI (2002) Extensional collapse of the Hellenides: a review. Revista de la Sociedad Geológica de España 15(3–4):129–139

    Google Scholar 

  • King GCP, Ouyang ZX, Papadimitrioy P, Deschamps A, Gagnepain J, Houseman G, Jackson JA, Soufleris C, Virieux J (1985) The evolution of the Gulf of Corinth (Greece): an aftershock study of the 1981 earthquakes. Geophys J R Astr Soc 80:677–683

    Article  Google Scholar 

  • Kokkalas S, Xypolias P, Koukouvelas I, Doutsos T (2006) Postcollisional contractional and extensional deformation in the Aegean region. Spe Pap Geol Soc Am 409:97–123

    Google Scholar 

  • Kontopoulos N, Doutsos T (1985) Sedimentology and tectonics of the Antirion area (Western Greece). Bull Geol Soc Ital 104:479–489

    Google Scholar 

  • Koutsouveli A, Mettos A, Tsapralis V, Tsaila-Monopolis ST, Ioakim CH, Mavrides A (1989) Geological map of Greece, Xylokastro sheet Scale 1:50 000. Institute of Geology and Mineral Exploration, Athens

    Google Scholar 

  • Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:625–655

    Article  Google Scholar 

  • Kydonakis K, Brun JP, Sokoutis D (2015) North Aegean core complexes, the gravity spreading of a thrust wedge. J Geophys Res Am Geophys Union 120(1):595–616. doi:10.1002/2014JB011601

  • Le Pichon X, Angelier J (1979) The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60:1–42

    Article  Google Scholar 

  • Le Pourhiet L, Burov E, Moretti I (2003) Initial crustal thickness geometry controls on the extension in a back arc domain: case of the Gulf of Corinth. Tectonics, vol 22(4). doi:10.1029/2002TC001433

  • Le Pourhiet L, Burov E, Moretti I (2004) Rifting through a stack of inhomogeneous thrusts (the dipping pie concept). Tectonics, vol 23 (TC4005). doi:10.1029/2003TC001584

  • Leeder MR, Mack GH (2007) Basin-fill incision, Rio Grande and Gulf of Corinth rifts: convergent response to climatic and tectonic drivers. In: Nichols G, Williams E, Paola C (eds) Sedimentary processes, environments and basins. Blackwell Publishing, Malden, pp 9–28

    Google Scholar 

  • Leeder MR, McNeill LC, Collier REL, Portman C, Rowe PJ, Andrews JE (2003) Corinth rift margin uplift: new evidence from late quaternary marine shorelines. Geophys Res Lett 30(12):13–14

    Article  Google Scholar 

  • Leeder MR, Mack GH, Brasier AT, Parrish RR, McIntosh WC, Andrews JE, Duermeijer CE (2008) Late-Pliocene timing of Corinth (Greece) rift-margin fault migration. Earth Planet Sci Lett 274:132–141. doi:10.1016/j.epsl.2008.07.006

    Article  Google Scholar 

  • Leeder MR, Mark DF, Gawthorpe RL, Kranis H, Loveless S, Pedentchouk N, Skourtsos E, Turner J, Andrews JE, Stamatakis M (2012) A ‘great deepening’: chronology of rift climax, Corinth rift, Greece. Geology 40:999–1002

    Article  Google Scholar 

  • Leroy S, Razin P, Autin J, Bache F, d’Acremont E, Watremez L, Robinet J, Baurion C, Denèle Y, Bellahsen N, Lucazeau F, Rolandone F, Rouzo S, Serra Kiel J, Robin C et al. (2012) From rifting to oceanic spreading in the Gulf of Aden: a synthesis. Arab J Geosci 5:859–901. doi:10.1007/s12517-011-0475-4

  • Lister GS, Banga G, Feenstra A (1984) Metamorphic core complexes of cordilleran type in the Cyclades, Aegean Sea. Greece Geol 12:221–225

    Google Scholar 

  • Loftus L, Tsoflias P, Yannetakis CP (1971) Geological map of Greece, Nafpaktos sheet, scale 1:50 000. Institute of Geology and Mineral Exploration, Athens

    Google Scholar 

  • Lohr T, Underhill JR (2015) Role of rift transection and punctuated subsidence in the development of the North Falkland Basin. Petrol Geosci 21:85–110. doi:10.1144/petgeo2014-050

    Article  Google Scholar 

  • Lykousis V, Sakellariou D, Papanikolaou D (1998) Sequence stratigraphy in the northern margin of the Gulf of Corinth: implications to upper quaternary basin evolution. Bull Geol Soc Greece 32:157–164

    Google Scholar 

  • Lykousis V, Sakellariou D, Moretti I, Kaberi H (2007) Late quaternary basin evolution of the Gulf of Corinth: sequence stratigraphy, sedimentation, fault-slip and subsidence rates. Tectonophysics 440:29–51

    Article  Google Scholar 

  • Lyon-caen H, Papadimitriou P, Deschamps A, Bernard P, Makropoulos K, Pacchiani F, Patau G (2004) First results of the CRLN seismic network in the western Corinth Rift: evidence for old-fault reactivation. CRG 336:343–351. doi:10.1016/j.crte.2003.12.004

    Article  Google Scholar 

  • Maroukian H, Gaki-Papanastassiou K, Karymbalis E, Vouvalidis K, Pavlopoulos K, Papanastassiou D, Albanakis K (2008) Morphotectonic control on drainage network evolution in the Perachora Peninsula, Greece. Geomorphology 102:81–92

    Google Scholar 

  • Martinod J, Husson L, Roperch P, Guillaume B, Espurt N (2010) Horizontal subduction zones, convergence velocity and building of the Andes. EPSL 299:299–309

    Article  Google Scholar 

  • Mattioni L, Le Pourhiet L, Moretti I (2006) Extension through a heterogeneous crust: new insight from analogue modelling. J Geol Soc Lond, Special publication n° 253:213–231

    Google Scholar 

  • McKenzie D (1978) Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophys J R Astr Soc 55:217–254

    Article  Google Scholar 

  • McNeill LC, Collier REL (2004) Uplift and slip rates of the Eastern Eliki fault segment, Gulf ofCorinth, Greece, inferred from Holocene and Pleistocene terraces. J Geol Soc Lond 161:81–92

    Article  Google Scholar 

  • McNeill LC, Cotterill CJ, Henstock TJ, Bull JM, Stefatos A, Collier REL, Papatheoderou G, Ferentinos G, Hicks SE (2005) Active faulting within the offshore western gulf of Corinth, Greece: implications for models of continental rift deformation. Geology 33:241–244

    Article  Google Scholar 

  • McNeill LC, Cotterill CJ, Bull JM, Henstock TJ, Bell R, Stefatos A (2007) Geometry and slip rate of the Aigion fault, a young normal fault system in theWestern Gulf of Corinth. Geology 35:355–358

    Article  Google Scholar 

  • McNeill L, Sakellariou D, Nixon C (2014) Drilling to resolve the evolution of the Corinth Rift, Eos. Trans Am Geophys Union 95(20):170–170. doi:10.1002/2014EO200009

    Article  Google Scholar 

  • Micarelli L, Moretti I, Daniel JM (2003) Structural properties of rift-related normal faults: the case study of the Gulf of Corinth—Greece. J Geodynam 36:275–303

    Article  Google Scholar 

  • Moretti I, Delhomme JP, Cornet F, Bernard P (2002) In: Scmidt-Hattenberger C, Borm G (eds) The Corinth rift laboratory: monitoring of actives faults. First Break 20(2)

    Google Scholar 

  • Moretti I, Sakellariou D, Lykousis V, Micarelli L (2003) The Gulf of Corinth: an active half graben? J Geodyn 36:323–340

    Article  Google Scholar 

  • Moretti I, Lykoussis V, Sakellariou D, Reynaud JY, Benziane B, Prinzhoffer A (2004) Sedimentation and subsidence rate in the Gulf of Corinth: what we learn from the Marion Dufresne’s long-piston coring. C R Geosci 336:291–299

    Article  Google Scholar 

  • Muntzos T (1992) Palyno- und Paläoklima-Stratigraphie der pliozänen und altpleistozänen Sedimente der nördlichen und nordwestlichen Peloponnes (Hellas). Newslett Stratigr 27(1–2):71–91

    Google Scholar 

  • Nixon CW et al (2016) Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece. Tectonics, vol 35, doi:10.1002/2015TC004026

  • Nürnberg D, Müller RD (1991) The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics 191:27–53

    Article  Google Scholar 

  • Nyst M, Thatcher W (2004) New constraints on the active tectonic deformation of the Aegean. J Geophys Res 109:B11406. doi:10.1029/2003JB002830

    Article  Google Scholar 

  • Ori GG (1989) Geologic history of the extensional basin of the gulf of Corinth (?Miocene-Pleistocene), Greece. Geology 17:918–921

    Article  Google Scholar 

  • Ori GG, Roveri M, Nichols G (1991) Architectural patterns in large-scale Gilbert-type delta complexes, Pleistocene, Gulf of Corinth, Greece. In: Miall AD, Tyler N (eds) The three dimensional facies architecture if terrigenous clastic sediments and its implications for hydrocarbon discovery and recovery. SEPM, pp 207–216 (Concept in Sedimentology and Paleontology)

    Google Scholar 

  • Palyvos N, Sorel D, Lemeille F, Mancini M, Pantosti D, Julia R, Triantaphyllou M, De Martini P (2007) Review and new data on uplift rates at the W termination of the Corinth Rift and the NE Rion graben area (Achaia, NW Peloponnesos). Bull Soc Geol Greece 40:412–424

    Google Scholar 

  • Pángaro F, Ramos VA (2012) Paleozoic crustal blocks of onshore and offshore central Argentina: new pieces of the southwestern Gondwana collage and their role in the accretion of Patagonia and the evolution of Mesozoic south Atlantic sedimentary basins. Mar Petrol Geol 37:162–183

    Article  Google Scholar 

  • Pantopoulos G, Zelilidis A (2014) Eocene to early oligocene turbidite sedimentation in the SE Aegean (Karpathos Island, SE Greece): stratigraphy, facies analysis, nannofossil study, and possible hydrocarbon potential. Turk J Earth Sci 23:31–52. doi:10.3906/yer-1204-8

    Article  Google Scholar 

  • Papanikolaou D, Royden L (2007) Disruption of the Hellenic arc, late Miocene extensional detachment faults and steep pliocene–quaternary normal faults—or what happened at Corinth? Tectonics 26:TC5003 http://dx.doi.org/10.1029/2006TC002007

  • Papanikolaou D, Lykoussis V, Chronis G, Pavlakis P (1988) A comparative study of neotectonic basins across the Hellenic Arc: the Messiniakos, Argolikos and Southern Evoikos Gulfs. Basin Res 1:167–176

    Article  Google Scholar 

  • Papanikolaou D, Logos E, Lozios S, Sideris C (1996) Geological map of Greece, Korinthos sheet, scale 1:100 000, European center on prevention and forecasting of earthquakes, earthquake planning and protection organization and tectonic committee of the geological society of Greece, Athens

    Google Scholar 

  • Papanikolaou D, Gouliotis L, Triantaphyllou M (2009) The Itea‐Amfissa detachment: a pre‐Corinth rift Miocene extensional structure in central Greece. In: van Hinsbergen DJJ, Edwards MA, Govers R (eds) Collision and collapse at the Africa‐Arabia‐Eurasia subduction zone. Geol Soc Spec Publ 311:293–310

    Google Scholar 

  • Papastamatiou I, Tataris A, Katsikatsos G, Maragoudakis N, Kallergis G, Elefteriou A, Zachos K (1962) Geological map of Greece, Galaxidion sheet, scale 1:50 000. Institute of Geology and Mineral Exploration, Athens

    Google Scholar 

  • Paraschoudis B, Machairas G (1977) Geological map of Greece, Amygdalea sheet, scale 1:50 000. Institute of Geology and Mining Research, Athens 1977

    Google Scholar 

  • Pearce FD, Rondenay S, Sachpazi M, Charalampakis M, Royden LH (2012) Seismic investigation of the transition from continental to oceanic subduction along the western Hellenic subduction zone. J Geophys Res 117 no. B7. http://dx.doi.org/10.1029/2011jb009023  

  • Pe-Piper G, Piper DJW (2007) Neogene back-arc volcanism of the Aegean: new insights into the relationship between magmatism and tectonics. In: Beccaluva L, Bianchini G (eds) Cenozoic volcanism in the Mediterranean area. Geological Society of America, pp 17–31. doi:10.1130/2007.2418(02) (Geol Soc Am Spec Paper)

  • Perissoratis C, Mitropoulos D, Angelopoulos L (1986) Marine geological research at the eastern Corinthiakos Gulf. Geol geophys Res Special Issue, IGME, Athens 381–401

    Google Scholar 

  • Perissoratis C, Piper DJW, Lykousis V (2000) Alternating marine and lacustrine edimentation during late quaternary in the Gulf of Corinth rift basin, central Greece. Mar Geol 167:391–411. doi:10.1016/S0025-3227(00)00038-4

    Article  Google Scholar 

  • Philippson A (1890) Der Isthmus Von Korinth, vol 25. Zeitschrift der Gesselshaft fur Erdkunde, Berlin, pp. 1–98

    Google Scholar 

  • Pik R, Marty B (2009) Helium isotopic signature of modern and fossil fluids associated with the Corinth rift fault zone (Greece): implication for fault connectivity in the lower crust. Chem Geol 266(1–2):67–75

    Article  Google Scholar 

  • Portman C, Andrews JE, Rowe PJ, Leeder MR, Hoogewerff J (2005) Submarine-spring controlled calcification and growth of spectacular Rivularia bioherms: late Pleistocene (MIS 5e), Gulf of Corinth, Greece. Sedimentology 52:441–465

    Article  Google Scholar 

  • Poulimenos G, Zelilidis A, Kontopoulos N, Doutsos T (1993) Geometry of trapezoidal fan deltas and their relationship to extensional faulting along the south-western active margins of the Corinth rift, Greece. Basins Res 5:179–192

    Article  Google Scholar 

  • Rangel HD, Carminatti M (2000) Rift lake stratigraphy of the Lagoa Feia formation, Campos basin, Brazil, lake basins through space and time. Am Assoc Petrol Geol Stud Geol 46:225–244

    Google Scholar 

  • Rigo A, Lyon Caen H, Armijo R, Deschamps A, Hatzfeld D, Makioupoulos K, Papadimitriou P, Kassaras I (1996) A microseismic study of the western part of the Gulf of Corinth [Greece]: implications for the large-scale normal faulting mechanisms. Geophys J Int 126:663–688

    Article  Google Scholar 

  • Roberts GP, Koukouvelas I (1996) Structural and seismological segmentation of the gulf of Corinth fault system: implication for models of fault growth. Annali di geofisica XXXIX(3):619–646

    Google Scholar 

  • Rögl F, Bernor RL, Dermitzakis MD, Müller C, Stancheva M (1991) On the Pontian correlation in the Aegean (Aegina Island). Newsl Stratigr 24:137–158

    Article  Google Scholar 

  • Rohais S, Eschard R, Ford M, Guillocheau F, Moretti I (2007a) Stratigraphic architecture of the Plio-Pleistocene infi ll of the Corinth rift: implications for its structural evolution. Tectonophysics 440:5–28. doi:10.1016/j.tecto.2006.11.006

    Article  Google Scholar 

  • Rohais S, Joannin S, Colin JP, Suc JP, Guillocheau F, Eschard R (2007b) Age and environmental evolution of the syn-rift fill of the southern coast of the gulf of Corinth (Akrata-Derveni region, Greece). Bull Soc Géol Fr 178:231–243

    Article  Google Scholar 

  • Rohais S, Eschard R, Guillocheau F (2008) Depositional model and stratigraphic architecture of rift climax Gilbert-type fan deltas (Gulf of Corinth, Greece). Sediment Geol 210:132–145. doi:10.1016/j.sedgeo.2008.08.001

    Article  Google Scholar 

  • Rohais S, Barrois A, Colletta B, Moretti I (2016) Pre-salt to salt stratigraphic architecture in a rift basin: insights from a basin-scale study of the Gulf of Suez (Egypt). Arab J Geosci 9:317. doi:10.1007/s12517-016-2327-8

  • Royden LH, Papanikolaou D (2011) Slab segmentation and late Cenozoic disruption of the Hellenic arc. Geochem Geophys Geosyst 12:Q03010. doi:10.1029/2010GC003280

    Article  Google Scholar 

  • Sachpazi M, Clément C, Laigle M, Hirn A, Roussos N (2003) Rift structure, evolution, and earthquakes in the Gulf of Corinth, from reflection seismic images. Earth 216:243–257

    Google Scholar 

  • Sachpazi M et al (2007) Moho topography under central Greece and its compensation by Pn time-terms for accurate location of hypocenters: the example of the Gulf of Corinth 1995 Aigion earthquake. Tectonophyiscs 440:53–65

    Article  Google Scholar 

  • Sakellariou D, Lykousis V, Papanikolaou D (1998) Neotectonic structure and evolution of the Gulf of Alkyonides, central Greece. Bull Geol Soc Greece 32:241–250

    Google Scholar 

  • Sakellariou D, Lykousis V, Alexandri S, Kaberi H, Rousakis G, Nomikou P, Georgiou P, Ballas D (2007) Faulting, seismic-stratigraphic architecture and late quaternary evolution of the Gulf of Alkyonides Basin-East Gulf of Corinth, Central Greece. Basin Res 19:273–295

    Article  Google Scholar 

  • Schattner U (2010) What triggered the early-to-mid Pleistocene tectonic transition across the entire eastern Mediterranean? Earth Planet Sci Lett 289:539–548. doi:10.1016/j.epsl.2009.11.048

    Article  Google Scholar 

  • Sherkati S, Molinaro M, Frizon de Lamotte D, Letouzey J (2005) Detachment folding in the Central and eastern Zagros fold-belt (Iran): salt mobility, multiple detachments and late basemebnt control. JSG 27(9):1680–1696

    Article  Google Scholar 

  • Skourtsos E, Kranis H (2009), Structure and evolution of the western Corinth rift, through new field data from the Northern Peloponnesus. Geol Soc Lond Spec Publ 321(1):119–138, doi:10.1144/SP321.6

  • Sokos E, Zahradník J, Kiratzi A, Janský J, Gallovič F, Novotny O, Kostelecký J, Serpetsidaki A, Tselentis G-A (2012) The January 2010 Efpalio earthquake sequence in the western Corinth Gulf (Greece). Tectonophysics 530–531:299–309

    Google Scholar 

  • Sorel D (2000) A Pleistocene and still active detachment fault and the origin of Corinth Patras rift, Greece. Geology 28:83–86

    Article  Google Scholar 

  • Sotiropoulos S, Kamberis E, Triantaphyllou M, Doutsos T (2003) Thrust sequences in the central part of the external Hellenides. Geol Mag 140(6):661–68

    Article  Google Scholar 

  • Stefatos A, Papatheodorou G, Ferentinos G, Leeder M, Collier REL (2002) Seismic reflection imaging of active offshore faults in the Gulf of Corinth: their seismotectonic significance. Basin Res 14(4):487–502. doi:10.1046/j.1365-2117.2002.00176.x

    Article  Google Scholar 

  • Symeonidis N, Theothorou G, Schutt H, Velitzelos E (1987) Paleontological and stratigraphic observations in the area of Achaia and Etoloakarnania W-Greece. Ann Geol Pays Hell Athens 38:317–353

    Google Scholar 

  • Taylor B, Weiss JR, Goodliffe AM, Sachpazi M, Laigle M, Hirn A (2011) The structure, stratigraphy and evolution of the Gulf of Corinth rift, Greece. Geophys J Int 185:1189–1219. doi:10.1111/j.1365-246X.2011.05014.x

    Article  Google Scholar 

  • Tiberi C, Diament M, Lyon-Caen H, King T (2001) Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data. Geophys J Int 145:797–808

    Google Scholar 

  • Tselentis GA, Makiopoulos K (1986) Rates of crustal deformation in the Gulf of Corinth [central Greece] as determined from seismicity. Tectonophysics 24:55–61

    Article  Google Scholar 

  • Tsodoulos IM, Koukouvelas IK, Pavlides S (2008) Tectonic geomorphology of the easternmost extension of the Gulf of Corinth (Beotia, Central Greece), Tectonophysics 453:211–232

    Google Scholar 

  • Tsoflias P, Fleury JJ, Bizon G, Stoppel D, Symeonides N, Katsikatsos G (1984) Geological map of Greece, Khalandrista sheet, scale 1:50 000. Institute of Geology and Mineral Exploration, Athens

    Google Scholar 

  • Tsoflias P, Fleury JJ, Ioakim CH, Mavridis AN (1993) Geological map of Greece, Derveni sheet, scale 1:50 000. Institute of Geology and Mineral Exploration, Athens

    Google Scholar 

  • West BP, May SR, Eastwood JE, Rossen C (2002) Interactive seismic facies classification using textural attributes and neural networks. Lead Edge, pp 1042–1049, Oct 2002

    Google Scholar 

  • Westaway R (2002) The Quaternary evolution of the Gulf of Corinth, central Greece: coupling between surface processes and flow in the lower continental crust. Tectonophysics 348:269–318

    Article  Google Scholar 

  • Xypolias P, Doutsos T (2000) Kinematics of rock flow in a crustal-scale shear zone: implication for the orogenic evolution of the southwestern Hellenides. Geol Mag 137(1):81–96

    Google Scholar 

  • Zelilidis A (2000) Drainage evolution in a rifted basin, Corinth graben, Greece. Geomorphology 35:69–85

    Article  Google Scholar 

  • Zelilidis A (2003) The geometry of fan-deltas and related turbidites in narrow linear basin. Geol J 37:1–16

    Google Scholar 

  • Zelilidis A, Kontopoulos N (1996) Significance of fan deltas without toe-sets within rift and piggy-back basins: examples from the Corinth graben and the Meso-hellenic though, Central Greece. Sedimentology 43:253–262

    Article  Google Scholar 

  • Zelt BC, Taylor B, Weiss JR, Goodliffe AM, Sachpazi M, Hirn A (2004) Streamer tomography velocity models for the Gulf of Corinth and the Gulf of Itea, Greece. Geophys J Int 159:333–346

    Article  Google Scholar 

  • Zelt BC, Taylor B, Sachpazi M, Hirn A (2005) Crustal velocity and Moho structure beneath the Gulf of Corinth, Greece. Geophys J Int 162:257–268

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by IFP Energies Nouvelles in the frame of the Numerical and Geological Modeling project. Brian Taylor, Laurent Jolivet and François Roure provided suitable comments on an earlier version of this paper that led to improve the manuscript. We thank Lisa Mc Neill and Dimitris Sakellariou for helpful discussions. We are very grateful to April Lloyd for post-editing the English style and grammar. We also thank the IGME, Athens, for permissions to do fieldwork for the last 12 years in the Gulf of Corinth. Finally, we thank two anonymous reviewers for helpful constructive comments and corrections of an earlier version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Rohais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rohais, S., Moretti, I. (2017). Structural and Stratigraphic Architecture of the Corinth Rift (Greece): An Integrated Onshore to Offshore Basin-Scale Synthesis. In: Roure, F., Amin, A., Khomsi, S., Al Garni, M. (eds) Lithosphere Dynamics and Sedimentary Basins of the Arabian Plate and Surrounding Areas. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-44726-1_5

Download citation

Publish with us

Policies and ethics