Skip to main content

Introduction

  • Chapter
  • First Online:
  • 426 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The study of topological order, particularly in the context of the band theory of solids, is a blossoming field that has returned to the forefront of condensed matter physics within the past 10 years. Several fascinating classes of recently discovered topological materials, including topological insulators (TIs) and topological crystalline insulators (TCIs), display very rich physics. These materials are host to topologically protected metallic surface states that are manifest as chiral Dirac fermion quasiparticles. As such, the surfaces of these crystals have and continue to be fruitful environments for studying a variety of interesting phenomena including axion dynamics, proximity induced superconductivity, and Majorana fermions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. Landau, On the theory of phase transitions, in em collected papers of L.D. Landau, ed. by D. Ter Haar (Pergamon, London, 1965), pp. 193–216

    Google Scholar 

  2. K.V. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)

    Article  ADS  Google Scholar 

  3. D.C. Tsui, H.L. Stormer, A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982)

    Article  ADS  Google Scholar 

  4. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)

    Article  ADS  Google Scholar 

  5. B.I. Halperin, Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  6. M.Z. Hasan, C.L. Kane, Colloquium. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  ADS  Google Scholar 

  7. R. Jackiw, C. Rebbi, Solitons with fermion number 1/2. Phys. Rev. D 13, 3398–3409 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  8. W.P. Su, J.R. Schrieffer, A.J. Heeger, Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979)

    Article  ADS  Google Scholar 

  9. S. Murakami, N. Nagaosa, S.-C. Zhang, Dissipationless quantum spin current at room temperature. Science 301 (5638), 1348–1351 (2003)

    Article  ADS  Google Scholar 

  10. S. Murakami, Quantum spin hall effect and enhanced magnetic response by spin-orbit coupling. Phys. Rev. Lett. 97, 236805 (2006)

    Article  ADS  Google Scholar 

  11. C.L. Kane, E.J. Mele, Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  12. B.A. Bernevig, S.-C. Zhang, Quantum spin hall effect. Phys. Rev. Lett. 96, 106802 (2006)

    Article  ADS  Google Scholar 

  13. B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314 (5806), 1757–1761 (2006)

    Article  ADS  Google Scholar 

  14. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Quantum spin hall insulator state in HgTe quantum wells. Science 318 (5851), 766–770 (2007)

    Article  ADS  Google Scholar 

  15. L. Fu, C.L. Kane, E.J. Mele, Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)

    Article  ADS  Google Scholar 

  16. J.E. Moore, L. Balents, Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007)

    Article  ADS  Google Scholar 

  17. R. Roy, Topological phases and the quantum spin hall effect in three dimensions. Phys. Rev. B 79, 195322 (2009)

    Article  ADS  Google Scholar 

  18. L. Fu, C.L. Kane, Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007)

    Article  ADS  Google Scholar 

  19. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5 (6), 398–402, 06 (2009)

    Google Scholar 

  20. Y.L. Chen, J.G. Analytis, J.-H. Chu, Z.K. Liu, S.-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.-X. Shen, Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325 (5937), 178–181 (2009)

    Article  ADS  Google Scholar 

  21. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, M.Z. Hasan, A topological Dirac insulator in a quantum spin hall phase. Nature 452 (7190), 970–974, 04 (2008)

    Google Scholar 

  22. Y.S. Hor, A. Richardella, P. Roushan, Y. Xia, J.G. Checkelsky, A. Yazdani, M.Z. Hasan, N.P. Ong, R.J. Cava, p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B 79, 195208 (2009)

    Google Scholar 

  23. D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, J. Osterwalder, L. Patthey, J.G. Checkelsky, N.P. Ong, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, A tunable topological insulator in the spin helical Dirac transport regime. Nature 460 (7259), 1101–1105, 08 (2009)

    Google Scholar 

  24. S.R. Park, W.S. Jung, C. Kim, D.J. Song, C. Kim, S. Kimura, K.D. Lee, N. Hur, Quasiparticle scattering and the protected nature of the topological states in a parent topological insulator Bi2Se3. Phys. Rev. B 81, 041405 (2010)

    Article  ADS  Google Scholar 

  25. Y. Xia, D. Qian, D. Hsieh, R. Shankar, H. Lin, A. Bansil, A.V. Fedorov, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Topological control: systematic control of topological insulator Dirac fermion density on the surface of Bi2Te3. arXiv, e-prints, July (2009)

    Google Scholar 

  26. D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J.H. Dil, J. Osterwalder, L. Patthey, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys. Rev. Lett. 103, 146401 (2009)

    Article  ADS  Google Scholar 

  27. L. Fu, Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011)

    Article  ADS  Google Scholar 

  28. Y.J. Wang, W.-F. Tsai, H. Lin, S.-Y. Xu, M. Neupane, M.Z. Hasan, A. Bansil, Nontrivial spin texture of the coaxial Dirac cones on the surface of topological crystalline insulator SnTe. Phys. Rev. B 87, 235317 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Howard, C. (2016). Introduction. In: Measuring, Interpreting and Translating Electron Quasiparticle - Phonon Interactions on the Surfaces of the Topological Insulators Bismuth Selenide and Bismuth Telluride. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44723-0_1

Download citation

Publish with us

Policies and ethics