Skip to main content

Stress Response Pathways

  • Chapter
  • First Online:
Ageing: Lessons from C. elegans

Part of the book series: Healthy Ageing and Longevity ((HAL))

Abstract

Physiological stress occurs when conditions perturb homeostasis. There are a multitude of stressors commonly encountered by organisms, including environmental factors such as temperature, pathogens, toxins, and food or oxygen availability, or internal disturbances caused by genetic defects or damage accumulated over the course of ageing. In this chapter, we discuss the fundamental relationships between stress and homeostasis. We then focus on various stress response strategies and highlight established molecular genetic stress response pathways. Many experiments, particularly those in C. elegans, have highlighted the intimate relationship between stress resistance and longevity. As such, a deeper understanding of the fundamental nature of stress and homeostatic stress responses is essential to fully appreciate the causes and consequences of ageing in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kopin IJ (1995) Definitions of stress and sympathetic neuronal responses. Ann N Y Acad Sci 771:19–30

    Article  CAS  PubMed  Google Scholar 

  2. Cannon WB (1929) Organization for physiological homeostasis. Physiol Rev 9:399–431

    Google Scholar 

  3. Cannon WB (1935) Stresses and strains of homeostasis. Am J Med Sci 189:13–14

    Article  Google Scholar 

  4. Bansal A, Zhu LJ, Yen K, Tissenbaum HA (2015) Uncoupling lifespan and healthspan in C. elegans longevity mutants. PNAS 112:E277–E286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Labbadia J, Morimoto RI (2015) Repression of the heat shock response is a programmed event at the onset of reproduction. Mol Cell 59:639–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dues DJ, Andrews EK, Schaar CE, Bergsma AL, Senchuk MM, Van Raamsdonk JM (2016) Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways. Aging (Albany NY) 8:777–795

    Article  Google Scholar 

  7. LaRue BL, Padilla PA (2011) Environmental and genetic preconditioning for long-term anoxia responses requires AMPK in C. elegans. PLoS ONE 6, e16790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klass MR (1977) Aging in the nematode C. elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6:413–429

    Article  CAS  PubMed  Google Scholar 

  9. Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci U S A 92:7540–7544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson TE, Henderson S, Murakami S, de Castro E, de Castro SH, Cypser J, Rikke B, Tedesco P, Link C (2002) Longevity genes in the nematode C. elegans also mediate increased resistance to stress and prevent disease. J Inherit Metab Dis 25:197–206

    Article  CAS  PubMed  Google Scholar 

  11. Shore DE, Carr CE, Ruvkun G (2012) Induction of cytoprotective pathways is central to the extension of lifespan conferred by multiple longevity pathways. PLoS Genet 8, e1002792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Y, Wilson DL (2000) Isolating aging mutants: a novel method yields three strains of the nematode C. elegans with extended life spans. Mech Ageing Dev 113:101–116

    Article  CAS  PubMed  Google Scholar 

  13. Muñoz MJ, Riddle DL (2003) Positive selection of C. elegans mutants with increased stress resistance and longevity. Genetics 163:171–180

    PubMed  PubMed Central  Google Scholar 

  14. Walker GA, Walker DW, Lithgow GJ (1998) Genes that determine both thermotolerance and rate of aging in C. elegans. Ann N Y Acad Sci 851:444–449

    Article  CAS  PubMed  Google Scholar 

  15. de Castro E, Hegi de Castro S, Johnson TE (2004) Isolation of long-lived mutants in C. elegans using selection for resistance to juglone. Free Radic Biol Med 37:139–145

    Article  PubMed  CAS  Google Scholar 

  16. Steinkraus KA, Smith ED, Davis C, Carr D, Pendergrass WR, Sutphin GL, Kennedy BK, Kaeberlein M (2008) Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in C. elegans. Aging Cell 7:394–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seo K, Choi E, Lee D, Jeong DE, Jang SK, Lee SJ (2013) Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans. Aging Cell 12:1073–1081

    Article  CAS  PubMed  Google Scholar 

  18. Morley JF, Morimoto RI (2004) Regulation of longevity in C. elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15:657–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145

    Article  CAS  PubMed  Google Scholar 

  20. Kirkwood TBL (2005) Understanding the odd science of aging. Cell 120:437–447

    Article  CAS  PubMed  Google Scholar 

  21. Yamamoto K, Honda S, Ishii N (1996) Properties of an oxygen-sensitive mutant mev-3 of the nematode C. elegans. Mutat Res 358:1–6

    Article  PubMed  Google Scholar 

  22. Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL (1998) Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in C. elegans. Genetics 150:129–155

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen D, Thomas EL, Kapahi P (2009) HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in C. elegans. PLoS Genet 5(5), e1000486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Leiser SF, Begun A, Kaeberlein M (2011) HIF-1 modulates longevity and healthspan in a temperature-dependent manner. Aging Cell 10:318–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Shao Z, Zhai Z, Shen C, Powell-Coffman JA (2009) The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans. PLoS ONE 4(7), e6348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode C. elegans. Curr Biol 11:1975–1980

    Article  CAS  PubMed  Google Scholar 

  27. Lee SJ, Hwang AB, Kenyon C (2010) Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol 20:2131–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dusenbery DB (1980) Appetitive response of the nematode C. elegans to oxygen. J Comp Physiol 136:333–336

    Article  Google Scholar 

  29. Gray JM, Karow DS, Lu H, Chang AJ, Chang JS, Ellis RE, Marletta MA, Bargmann CI (2004) Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430:317–322

    Article  CAS  PubMed  Google Scholar 

  30. Wittenburg N, Baumeister R (1999) Thermal avoidance in C. elegans: an approach to the study of nociception. PNAS 96:10477–10482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pujol N, Link EM, Liu LX, Kurz CL, Alloing G, Tan MW, Ray KP, Solari R, Johnson CD, Ewbank JJ (2001) A reverse genetic analysis of components of the Toll signaling pathway in C. elegans. Curr Biol 11:809–821

    Article  CAS  PubMed  Google Scholar 

  32. Edwards SL, Charlie NK, Milfort MC, Brown BS, Gravlin CN, Knecht JE, Miller KG (2008) A novel molecular solution for ultraviolet light detection in C. elegans. PLoS Biol 6, e198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Melo JA, Ruvkun G (2012) Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 149:452–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu PJ (2007) Dauer. WormBook 1–19

    Google Scholar 

  35. Burnell AM, Houthoofd K, O’Hanlon K, Vanfleteren JR (2005) Alternate metabolism during the dauer stage of the nematode C. elegans. Exp Gerontol 40:850–856

    Article  CAS  PubMed  Google Scholar 

  36. Narbonne P, Roy R (2006) Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development 133:611–619

    Article  CAS  PubMed  Google Scholar 

  37. Lee H, Choi M, Lee D, Kim H, Hwang H, Kim H, Park S, Paik Y, Lee J (2011) Nictation, a dispersal behavior of the nematode C. elegans, is regulated by IL2 neurons. Nat Neurosci 15:107–112

    Article  CAS  PubMed  Google Scholar 

  38. Baugh LR (2013) To grow or not to grow: nutritional control of development during C. elegans L1 arrest. Genetics 194:539–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fukuyama M, Rougvie AE, Rothman JH (2006) C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Curr Biol 16:773–779

    Article  CAS  PubMed  Google Scholar 

  40. Fukuyama M, Sakuma K, Park R, Kasuga H, Nagaya R, Atsumi Y, Shimomura Y, Takahashi S, Kajiho H, Rougvie A, Kontani K, Katada T (2012) C. elegans AMPKs promote survival and arrest germline development during nutrient stress. Biol Open 1:929–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Narbonne P, Roy R (2009) C. elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature 457:210–214

    Article  CAS  PubMed  Google Scholar 

  42. Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131:3897–3906

    Article  CAS  PubMed  Google Scholar 

  43. Korta DZ, Tuck S, Hubbard EJA (2012) S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells. Development 139:859–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seidel HS, Kimble J (2015) Cell-cycle quiescence maintains C. elegans germline stem cells independent of GLP-1/Notch. Elife 4, e10832

    Article  PubMed  PubMed Central  Google Scholar 

  45. Angelo G, Van Gilst MR (2009) Starvation protects germline stem cells and extends reproductive longevity in C. elegans. Science 326:954–958

    Article  CAS  PubMed  Google Scholar 

  46. Seidel HS, Kimble J (2011) The oogenic germline starvation response in C. elegans. PLoS ONE 6, e28074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schafer WR (2005) Egg-laying. WormBook 1–7

    Google Scholar 

  48. Chen J, Caswell-Chen EP (2004) Facultative vivipary is a life-history trait in C. elegans. J Nematol 36:107–113

    PubMed  PubMed Central  Google Scholar 

  49. Nystul TG, Roth MB (2004) Carbon monoxide-induced suspended animation protects against hypoxic damage in C. elegans. PNAS 101:9133–9136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miller DL, Roth MB (2009) C. elegans are protected from lethal hypoxia by an embryonic diapause. Curr Biol 19:1233–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nystul TG, Goldmark JP, Padilla PA, Roth MB (2003) Suspended animation in C. elegans requires the spindle checkpoint. Science 302:1038–1041

    Article  CAS  PubMed  Google Scholar 

  52. Mendenhall AR, LaRue B, Padilla PA (2006) Glyceraldehyde-3-phosphate dehydrogenase mediates anoxia response and survival in C. elegans. Genetics 174:1173–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Frazier HN 3rd, Roth MB (2009) Adaptive sugar provisioning controls survival of C. elegans embryos in adverse environments. Curr Biol 19:859–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scott BA, Avidan MS, Crowder CM (2002) Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science 296:2388–2391

    Article  CAS  PubMed  Google Scholar 

  55. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    Article  CAS  PubMed  Google Scholar 

  56. Chan K, Goldmark JP, Roth MB (2010) Suspended animation extends survival limits of C. elegans and Saccharomyces cerevisiae at low temperature. Mol Biol Cell 21:2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dasgupta N, Patel AM, Scott BA, Crowder CM (2007) Hypoxic preconditioning requires the apoptosis protein CED-4 in C. elegans. Curr Biol 17:1954–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Choe KP, Strange K (2008) Genome-wide RNAi screen and in vivo protein aggregation reporters identify degradation of damaged proteins as an essential hypertonic stress response. Am J Physiol Cell Physiol 295:C1488–C1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cypser JR, Johnson TE (2002) Multiple stressors in C. elegans induce stress hormesis and extended longevity. J Gerontol A Biol Sci Med Sci 57:B109–B114

    Article  PubMed  Google Scholar 

  60. Van Voorhies WA (2001) Hormesis and aging. Hum Exp Toxicol 20:315–317

    Article  PubMed  Google Scholar 

  61. Cypser JR, Tedesco P, Johnson TE (2006) Hormesis and aging in C. elegans. Exp Gerontol 41:935–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mattson MP (2008) Hormesis defined. Ageing Res Rev 7:1–7

    Article  CAS  PubMed  Google Scholar 

  63. Gems D, Partridge L (2008) Stress-response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab 7:200–203

    Article  CAS  PubMed  Google Scholar 

  64. Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D, Hsu C-H, Aravind L, He C, Shi Y (2015) DNA methylation on N6-adenine in C. elegans. Cell 161:868–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS, Han S, Banko MR, Gozani O, Brunet A (2010) Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466:383–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maures TJ, Greer EL, Hauswirth AG, Brunet A (2011) The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 10:980–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A (2011) Transgenerational epigenetic inheritance of longevity in C. elegans. Nature 479:365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Riedel CG, Dowen RH, Lourenco GF, Kirienko NV, Heimbucher T, West JA, Bowman SK, Kingston RE, Dillin A, Asara JM, Ruvkun G (2013) DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat Cell Biol 15:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miller DL, Roth MB (2007) Hydrogen sulfide increases thermotolerance and lifespan in C. elegans. PNAS 104:20618–20622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  71. Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1alpha. Genes Dev 12:149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Giaccia AJ, Simon MC, Johnson R (2004) The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev 18:2183–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Centanin L, Dekanty A, Romero N, Irisarri M, Gorr TA, Wappner P (2008) Cell autonomy of HIF effects in Drosophila: tracheal cells sense hypoxia and induce terminal branch sprouting. Dev Cell 14:547–558

    Article  CAS  PubMed  Google Scholar 

  75. Van Voorhies WA (2002) The influence of metabolic rate on longevity in the nematode C. elegans. Aging Cell 1:91–101

    Article  PubMed  Google Scholar 

  76. Van Voorhies WA, Ward S (1999) Genetic and environmental conditions that increase longevity in C. elegans decrease metabolic rate. PNAS 96:11399–11403

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang B, Xiao R, Ronan EA, He Y, Hsu AL, Liu J, Xu XZ (2015) Environmental temperature differentially modulates C. elegans longevity through a thermosensitive TRP channel. Cell Rep 11:1414–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xiao R, Zhang B, Dong Y, Gong J, Xu T, Liu J, Xu XZ (2013) A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152:806–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hedgecock EM, Russell RL (1975) Normal and mutant thermotaxis in the nematode C. elegans. PNAS 72:4061–4065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu S, Schulze E, Baumeister R (2012) Temperature- and touch-sensitive neurons couple CNG and TRPV channel activities to control heat avoidance in C. elegans. PLoS ONE 7, e32360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kimura KD, Miyawaki A, Matsumoto K, Mori I (2004) The C. elegans thermosensory neuron AFD responds to warming. Curr Biol 14:1291–1295

    Article  CAS  PubMed  Google Scholar 

  82. Clark DA, Biron D, Sengupta P, Samuel AD (2006) The AFD sensory neurons encode multiple functions underlying thermotactic behavior in C. elegans. J Neurosci 26:7444–7451

    Article  CAS  PubMed  Google Scholar 

  83. Mori I, Ohshima Y (1995) Neural regulation of thermotaxis in C. elegans. Nature 376:344–348

    Article  CAS  PubMed  Google Scholar 

  84. Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524

    Article  CAS  PubMed  Google Scholar 

  85. Freeman ML, Spitz DR, Meredith MJ (1990) Does heat shock enhance oxidative stress? Studies with ferrous and ferric iron. Radiat Res 124:288–293

    Article  CAS  PubMed  Google Scholar 

  86. Mitchell JB, Russo A (1983) Thiols, thiol depletion, and thermosensitivity. Radiat Res 95:471–485

    Article  CAS  PubMed  Google Scholar 

  87. Bruskov VI, Malakhova LV, Masalimov ZK, Chernikov AV (2002) Heat-induced formation of reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA. Nucleic Acids Res 30:1354–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dukan S, Farewell A, Ballesteros M, Taddei F, Radman M, Nyström T (2000) Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci U S A 97:5746–5749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Craig EA, Gambill BD, Nelson RJ (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57:402–414

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634

    Article  CAS  PubMed  Google Scholar 

  91. Ali A, Bharadwaj S, O’Carroll R, Ovsenek N (1998) HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18:4949–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  CAS  PubMed  Google Scholar 

  93. Bharadwaj S, Ali A, Ovsenek N (1999) Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 In vivo. Mol Cell Biol 19:8033–8041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shi Y, Mosser DD, Morimoto RI (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12:654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Garigan D, Hsu A-L, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in C. elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161:1101–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Michalski AI, Johnson TE, Cypser JR, Yashin AI (2001) Heating stress patterns in C. elegans longevity and survivorship. Biogerontology 2:35–44

    Article  CAS  PubMed  Google Scholar 

  97. Olsen A, Vantipalli MC, Lithgow GJ (2006) Lifespan extension of C. elegans following repeated mild hormetic heat treatments. Biogerontology 7:221–230

    Article  PubMed  Google Scholar 

  98. Walker GA, Lithgow GJ (2003) Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2:131–139

    Article  CAS  PubMed  Google Scholar 

  99. Yokoyama K, Fukumoto K, Murakami T, Harada S, Hosono R, Wadhwa R, Mitsui Y, Ohkuma S (2002) Extended longevity of C. elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Lett 516:53–57

    Article  CAS  PubMed  Google Scholar 

  100. Rea SL, Wu D, Cypser JR, Vaupel JW, Johnson TE (2005) A stress-sensitive reporter predicts longevity in isogenic populations of C. elegans. Nat Genet 37:894–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Prahlad V, Cornelius T, Morimoto RI (2008) Regulation of the cellular heat shock response in C. elegans by thermosensory neurons. Science 320:811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee SJ, Kenyon C (2009) Regulation of the longevity response to temperature by thermosensory neurons in C. elegans. Curr Biol 19:715–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Douglas PM, Baird NA, Simic MS, Uhlein S, McCormick MA, Wolff SC, Kennedy BK, Dillin A (2015) Heterotypic signals from neural HSF-1 separate thermotolerance from longevity. Cell Rep 12:1196–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shen C, Powell-Coffman JA (2003) Genetic analysis of hypoxia signaling and response in C. elegans. Ann N Y Acad Sci 995:191–199

    Article  CAS  PubMed  Google Scholar 

  105. Frézal L, Félix MA (2015) C. elegans outside the Petri dish. Elife 4, e05849

    Article  PubMed Central  Google Scholar 

  106. Voorhies WAV, Ward S (2000) Broad oxygen tolerance in the nematode C. elegans. J Exp Biol 203:2467–2478

    PubMed  Google Scholar 

  107. Zimmer M, Gray JM, Pokala N, Chang AJ, Karow DS, Marletta MA, Hudson ML, Morton DB, Chronis N, Bargmann CI (2009) Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron 61:865–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cheung BHH, Cohen M, Rogers C, Albayram O, de Bono M (2005) Experience-dependent modulation of C. elegans behavior by ambient oxygen. Curr Biol 15:905–917

    Article  CAS  PubMed  Google Scholar 

  109. Rogers C, Persson A, Cheung B, de Bono M (2006) Behavioral motifs and neural pathways coordinating O2 responses and aggregation in C. elegans. Curr Biol 16:649–659

    Article  CAS  PubMed  Google Scholar 

  110. Chang AJ, Chronis N, Karow DS, Marletta MA, Bargmann CI (2006) A distributed chemosensory circuit for oxygen preference in C. elegans. PLoS Biol 4, e274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47:469–484

    Article  CAS  PubMed  Google Scholar 

  112. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9:169–176

    Article  CAS  PubMed  Google Scholar 

  113. Hartman P, Ponder R, Lo H-H, Ishii N (2004) Mitochondrial oxidative stress can lead to nuclear hypermutability. Mech Ageing Dev 125:417–420

    Article  CAS  PubMed  Google Scholar 

  114. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670–C686

    Article  CAS  PubMed  Google Scholar 

  115. Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163:560–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  CAS  PubMed  Google Scholar 

  117. Galanis A, Karapetsas A, Sandaltzopoulos R (2009) Metal-induced carcinogenesis, oxidative stress and hypoxia signalling. Mutat Res 674:31–35

    Article  CAS  PubMed  Google Scholar 

  118. Kammeyer A, Luiten RM (2015) Oxidation events and skin aging. Ageing Res Rev 21:16–29

    Article  CAS  PubMed  Google Scholar 

  119. Hellou J, Ross NW, Moon TW (2012) Glutathione, glutathione S-transferase, and glutathione conjugates, complementary markers of oxidative stress in aquatic biota. Environ Sci Pollut Res Int 19:2007–2023

    Article  CAS  PubMed  Google Scholar 

  120. Mazerska Z, Mróz A, Pawłowska M, Augustin E (2016) The role of glucuronidation in drug resistance. Pharmacol Ther 159:35–55

    Article  CAS  PubMed  Google Scholar 

  121. Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY, Isik M (2015) SKN-1/Nrf, stress responses, and aging in C. elegans. Free Radic Biol Med 88(Part B):290–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Blackwell TK, Bowerman B, Priess JR, Weintraub H (1994) Formation of a monomeric DNA binding domain by Skn-1 bZIP and homeodomain elements. Science 266:621–628

    Article  CAS  PubMed  Google Scholar 

  123. Bowerman B, Eaton BA, Priess JR (1992) skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo. Cell 68:1061–1075

    Article  CAS  PubMed  Google Scholar 

  124. Robertson SM, Shetty P, Lin R (2004) Identification of lineage-specific zygotic transcripts in early C. elegans embryos. Dev Biol 276:493–507

    Article  CAS  PubMed  Google Scholar 

  125. An JH, Blackwell TK (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17:1882–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Park SK, Tedesco PM, Johnson TE (2009) Oxidative stress and longevity in C. elegans as mediated by SKN-1. Aging Cell 8:258–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Oliveira RP, Porter Abate J, Dilks K, Landis J, Ashraf J, Murphy CT, Blackwell TK (2009) Condition-adapted stress and longevity gene regulation by C. elegans SKN-1/Nrf. Aging Cell 8:524–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Goh GYS, Martelli KL, Parhar KS, Kwong AWL, Wong MA, Mah A, Hou NS, Taubert S (2014) The conserved mediator subunit MDT-15 is required for oxidative stress responses in C. elegans. Aging Cell 13:70–79

    Article  CAS  PubMed  Google Scholar 

  129. McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD (2004) Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J Biol Chem 279:31556–31567

    Article  CAS  PubMed  Google Scholar 

  130. Zhang DD, Lo S-C, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24:10941–10953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. McMahon M, Itoh K, Yamamoto M, Hayes JD (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 278:21592–21600

    Article  CAS  PubMed  Google Scholar 

  132. Choe KP, Przybysz AJ, Strange K (2009) The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in C. elegans. Mol Cell Biol 29:2704–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Li X, Matilainen O, Jin C, Glover-Cutter KM, Holmberg CI, Blackwell TK (2011) Specific SKN-1/Nrf stress responses to perturbations in translation elongation and proteasome activity. PLoS Genet 7, e1002119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kahn NW, Rea SL, Moyle S, Kell A, Johnson TE (2008) Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in C. elegans. Biochem J 409:205–213

    Article  CAS  PubMed  Google Scholar 

  135. Höhn TJ, Grune T (2014) The proteasome and the degradation of oxidized proteins: part III-Redox regulation of the proteasomal system. Redox Biol 2:388–394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Leung CK, Empinado H, Choe KP (2012) Depletion of a nucleolar protein activates xenobiotic detoxification genes in C. elegans via Nrf /SKN-1 and p53/CEP-1. Free Radic Biol Med 52:937–950

    Article  CAS  PubMed  Google Scholar 

  137. Wang J, Robida-Stubbs S, Tullet JMA, Rual J-F, Vidal M, Blackwell TK (2010) RNAi screening implicates a SKN-1–dependent transcriptional response in stress resistance and longevity deriving from translation inhibition. PLoS Genet 6, e1001048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Inoue H (2005) The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev 19:2278–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kell A, Ventura N, Kahn N, Johnson TE (2007) Activation of SKN-1 by novel kinases in C. elegans. Free Radic Biol Med 43:1560–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. An JH, Vranas K, Lucke M, Inoue H, Hisamoto N, Matsumoto K, Blackwell TK (2005) Regulation of the C. elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. PNAS 102:16275–16280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Maduro MF, Meneghini MD, Bowerman B, Broitman-Maduro G, Rothman JH (2001) Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3beta homolog is mediated by MED-1 and -2 in C. elegans. Mol Cell 7:475–485

    Article  CAS  PubMed  Google Scholar 

  142. Adachi H, Fujiwara Y, Ishii N (1998) Effects of oxygen on protein carbonyl and aging in C. elegans mutants with long (age-1) and short (mev-1) life spans. J Gerontol A Biol Sci Med Sci 53A:B240–B244

    Article  CAS  Google Scholar 

  143. Jiang H, Guo R, Powell-Coffman JA (2001) The C. elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. PNAS 98:7916–7921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shen C, Nettleton D, Jiang M, Kim SK, Powell-Coffman JA (2005) Roles of the HIF-1 hypoxia-inducible factor during hypoxia response in C. elegans. J Biol Chem 280:20580–20588

    Article  CAS  PubMed  Google Scholar 

  145. Bishop T, Lau KW, Epstein ACR, Kim SK, Jiang M, O’Rourke D, Pugh CW, Gleadle JM, Taylor MS, Hodgkin J, Ratcliffe PJ (2004) Genetic analysis of pathways regulated by the von Hippel-Lindau tumor suppressor in C. elegans. PLoS Biol 2, e289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24:97–106

    Article  CAS  Google Scholar 

  147. Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40:294–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    Article  CAS  PubMed  Google Scholar 

  149. Xie M, Roy R (2012) Increased levels of hydrogen peroxide induce a HIF-1-dependent modification of lipid metabolism in AMPK compromised C.¬†elegans Dauer Larvae. Cell Metab 16:322–335

    Article  CAS  PubMed  Google Scholar 

  150. Troen BR (2003) The biology of aging. Mt Sinai J Med 70:3–22

    PubMed  Google Scholar 

  151. Gems D, Doonan R (2009) Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong. Cell Cycle 8:1681–1687

    Article  CAS  PubMed  Google Scholar 

  152. Yang W, Li J, Hekimi S (2007) A measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of C. elegans. Genetics 177:2063–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P, Matscheski A, Vanfleteren JR, Gems D (2008) Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in C. elegans. Genes Dev 22:3236–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cabreiro F, Ackerman D, Doonan R, Araiz C, Back P, Papp D, Braeckman BP, Gems D (2011) Increased life span from overexpression of superoxide dismutase in C. elegans is not caused by decreased oxidative damage. Free Radic Biol Med 51:1575–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Van Raamsdonk JM, Hekimi S (2012) Superoxide dismutase is dispensable for normal animal lifespan. PNAS 109:5785–5790

    Article  PubMed  PubMed Central  Google Scholar 

  156. Schmeisser S, Schmeisser K, Weimer S, Groth M, Priebe S, Fazius E, Kuhlow D, Pick D, Einax JW, Guthke R, Platzer M, Zarse K, Ristow M (2013) Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension. Aging Cell 12:508–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Petriv OI, Rachubinski RA (2004) Lack of peroxisomal catalase causes a progeric phenotype in C. elegans. J Biol Chem 279:19996–20001

    Article  CAS  PubMed  Google Scholar 

  158. Oláhová M, Taylor SR, Khazaipoul S, Wang J, Morgan BA, Matsumoto K, Blackwell TK, Veal EA (2008) A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance. PNAS 105:19839–19844

    Article  PubMed  PubMed Central  Google Scholar 

  159. Schmeisser S, Priebe S, Groth M, Monajembashi S, Hemmerich P, Guthke R, Platzer M, Ristow M (2013) Neuronal ROS signaling rather than AMPK/sirtuin-mediated energy sensing links dietary restriction to lifespan extension. Mol Metab 2:92–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends C. elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6:280–293

    Article  CAS  PubMed  Google Scholar 

  161. Leiser SF, Kaeberlein M (2010) The hypoxia inducible factor HIF-1 functions as both a positive and negative modulator of aging. Biol Chem 391:1131–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mehta R, Steinkraus KA, Sutphin GL, Ramos FJ, Shamieh LS, Huh A, Davis C, Chandler-Brown D, Kaeberlein M (2009) Proteasomal regulation of the hypoxic response modulates aging in C. elegans. Science 324:1196–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Treinin M, Shliar J, Jiang H, Powell-Coffman JA, Bromberg Z, Horowitz M (2003) HIF-1 is required for heat acclimation in the nematode C. elegans. Physiol Genomics 14:17–24

    Article  CAS  PubMed  Google Scholar 

  164. Chang AJ, Bargmann CI (2008) Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in C. elegans. PNAS 105:7321–7326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Honda S, Ishii N, Suzuki K, Matsuo M (1993) Oxygen-dependent perturbation of life span and aging rate in the nematode. J Gerontol 48:B57–B61

    Article  CAS  PubMed  Google Scholar 

  166. Leiser SF, Fletcher M, Begun A, Kaeberlein M (2013) Life-span extension from hypoxia in C. elegans requires both HIF-1 and DAF-16 and is antagonized by SKN-1. J Gerontol A Biol Sci Med Sci 68:1135–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Müller RU, Fabretti F, Zank S, Burst V, Benzing T, Schermer B (2009) The von Hippel Lindau tumor suppressor limits longevity. J Am Soc Nephrol 20:2513–2517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Leiser SF, Miller H, Rossner R, Fletcher M, Leonard A, Primitivo M, Rintala N, Ramos FJ, Miller DL, Kaeberlein M (2015) Cell nonautonomous activation of flavin-containing monooxygenase promotes longevity and health span. Science 350:1375–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shao Z, Zhang Y, Powell-Coffman JA (2009) Two distinct roles for EGL-9 in the regulation of HIF-1-mediated gene expression in C. elegans. Genetics 183:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, Sabatini DM, Blackwell TK (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15:713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tullet JMA, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132:1025–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Tang L, Choe KP (2015) Characterization of skn-1/wdr-23 phenotypes in C. elegans; pleiotrophy, aging, glutathione, and interactions with other longevity pathways. Mech Ageing Dev 149:88–98

    Article  CAS  PubMed  Google Scholar 

  173. Paek J, Lo JY, Narasimhan SD, Nguyen TN, Glover-Cutter K, Robida-Stubbs S, Suzuki T, Yamamoto M, Blackwell TK, Curran SP (2012) Mitochondrial SKN-1/Nrf mediates a conserved starvation response. Cell Metab 16:526–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447:545–549

    Article  CAS  PubMed  Google Scholar 

  175. Vanduyn N, Settivari R, Wong G, Nass R (2010) SKN-1/Nrf2 inhibits dopamine neuron degeneration in a C. elegans model of methylmercury toxicity. Toxicol Sci 118:613–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Niu W, Lu ZJ, Zhong M, Sarov M, Murray JI, Brdlik CM, Janette J, Chen C, Alves P, Preston E, Slightham C, Jiang L, Hyman AA, Kim SK, Waterston RH, Gerstein M, Snyder M, Reinke V (2011) Diverse transcription factor binding features revealed by genome-wide ChIP-seq in C. elegans. Genome Res 21:245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mizunuma M, Neumann-Haefelin E, Moroz N, Li Y, Blackwell TK (2014) mTORC2-SGK-1 acts in two environmentally responsive pathways with opposing effects on longevity. Aging Cell 13:869–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in C. elegans aging. PNAS 106:14914–14919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Heidler T, Hartwig K, Daniel H, Wenzel U (2010) C. elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology 11:183–195

    Article  CAS  PubMed  Google Scholar 

  180. Hong M, Kwon JY, Shim J, Lee J (2004) Differential hypoxia response of hsp-16 genes in the nematode. J Mol Biol 344:369–381

    Article  CAS  PubMed  Google Scholar 

  181. Wang D, Liu P, Yang Y, Shen L (2010) Formation of a combined Ca/Cd toxicity on lifespan of nematode C. elegans. Ecotoxicol Environ Saf 73:1221–1230

    Article  CAS  PubMed  Google Scholar 

  182. Johnson JR, Rajamanoharan D, McCue HV, Rankin K, Barclay JW (2016) Small heat shock proteins are novel common determinants of alcohol and nicotine sensitivity in C. elegans. Genetics 202:1013–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Link CD, Cypser JR, Johnson CJ, Johnson TE (1999) Direct observation of stress response in C. elegans using a reporter transgene. Cell Stress Chaperones 4:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Leroy M, Mosser T, Manière X, Alvarez DF, Matic I (2012) Pathogen-induced C. elegans developmental plasticity has a hormetic effect on the resistance to biotic and abiotic stresses. BMC Evol Biol 12:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang X, Li L, Wang D (2010) Lifespan extension in C. elegans by DMSO is dependent on sir-2.1 and daf-16. Biochem Biophys Res Commun 400:613–618

    Article  CAS  PubMed  Google Scholar 

  186. Roh JY, Lee J, Choi J (2006) Assessment of stress-related gene expression in the heavy metal-exposed nematode C. elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ Toxicol Chem 25:2946–2956

    Article  CAS  PubMed  Google Scholar 

  187. Satyal SH, Schmidt E, Kitagawa K, Sondheimer N, Lindquist S, Kramer JM, Morimoto RI (2000) Polyglutamine aggregates alter protein folding homeostasis in C. elegans. PNAS 97:5750–5755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sasagawa Y, Yamanaka K, Ogura T (2007) ER E3 ubiquitin ligase HRD-1 and its specific partner chaperone BiP play important roles in ERAD and developmental growth in C. elegans. Genes Cells 12:1063–1073

    Article  CAS  PubMed  Google Scholar 

  189. Safra M, Ben-Hamo S, Kenyon C, Henis-Korenblit S (2013) The ire-1 ER stress-response pathway is required for normal secretory-protein metabolism in C. elegans. J Cell Sci 126:4136–4146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Anderson LL, Mao X, Scott BA, Crowder CM (2009) Survival from hypoxia in C. elegans by inactivation of aminoacyl-tRNA synthetases. Science 323:630–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164:341–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Shen X, Ellis RE, Lee K, Liu C-Y, Yang K, Solomon A, Yoshida H, Morimoto R, Kurnit DM, Mori K, Kaufman RJ (2001) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107:893–903

    Article  CAS  PubMed  Google Scholar 

  193. Shen X, Ellis RE, Sakaki K, Kaufman RJ (2005) Genetic interactions due to constitutive and inducible gene regulation mediated by the unfolded protein response in C. elegans. PLoS Genet 1, e37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Richardson CE, Kinkel S, Kim DH (2011) Physiological IRE-1-XBP-1 and PEK-1 signaling in C. elegans larval development and immunity. PLoS Genet 7, e1002391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Moore KA, Hollien J (2012) The unfolded protein response in secretory cell function. Annu Rev Genet 46:165–183

    Article  CAS  PubMed  Google Scholar 

  196. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96

    Article  CAS  PubMed  Google Scholar 

  197. Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM (2012) Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337:587–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yoneda T (2004) Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 117:4055–4066

    Article  CAS  PubMed  Google Scholar 

  199. Bennett CF, Vander Wende H, Simko M, Klum S, Barfield S, Choi H, Pineda VV, Kaeberlein M (2014) Activation of the mitochondrial unfolded protein response does not predict longevity in C. elegans. Nat Commun 5:3483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Haynes CM, Yang Y, Blais SP, Neubert TA, Ron D (2010) The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37:529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Haynes CM, Petrova K, Benedetti C, Yang Y, Ron D (2007) ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 13:467–480

    Article  CAS  PubMed  Google Scholar 

  202. Benedetti C, Haynes CM, Yang Y, Harding HP, Ron D (2006) Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174:229–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Nargund AM, Fiorese CJ, Pellegrino MW, Deng P, Haynes CM (2015) Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPRmt. Mol Cell 58:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Baker BM, Nargund AM, Sun T, Haynes CM (2012) Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2. PLoS Genet 8, e1002760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Taylor RC, Dillin A (2013) XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153:1435–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Henis-Korenblit S, Zhang P, Hansen M, McCormick M, Lee SJ, Cary M, Kenyon C (2010) Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity. PNAS 107:9730–9735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Richardson CE, Kooistra T, Kim DH (2010) An essential role for XBP-1 in host protection against immune activation in C. elegans. Nature 463:1092–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Bischof LJ, Kao C-Y, Los FCO, Gonzalez MR, Shen Z, Briggs SP, van der Goot FG, Aroian RV (2008) Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLoS Pathog 4, e1000176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Feng J, Bussière F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in C. elegans. Dev Cell 1:633–644

    Article  CAS  PubMed  Google Scholar 

  210. Tsang WY, Sayles LC, Grad LI, Pilgrim DB, Lemire BD (2001) Mitochondrial respiratory chain deficiency in C. elegans results in developmental arrest and increased life span. J Biol Chem 276:32240–32246

    Article  CAS  PubMed  Google Scholar 

  211. Dillin A, Hsu A-L, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401

    Article  CAS  PubMed  Google Scholar 

  212. Lee SS, Lee RYN, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48

    Article  CAS  PubMed  Google Scholar 

  213. Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19:1544–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Hansen M, Hsu AL, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a C. elegans genomic RNAi screen. PLoS Genet 1:119–128

    Article  CAS  PubMed  Google Scholar 

  215. Ren Y, Chen S, Ma M, Yao X, Sun D, Li B, Lu J (2015) The activation of protein homeostasis protective mechanisms perhaps is not responsible for lifespan extension caused by deficiencies of mitochondrial proteins in C. elegans. Exp Gerontol 65:53–57

    Article  CAS  PubMed  Google Scholar 

  216. Durieux J, Wolff S, Dillin A (2011) The cell non-autonomous nature of electron transport chain-mediated longevity. Cell 144:79–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Tian Y, Garcia G, Bian Q, Steffen KK, Joe L, Wolff S, Meyer BJ, Dillin A (2016) Mitochondrial stress induces chromatin reorganization to promote longevity and UPRmt. Cell 165:1197–1208

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana L. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miller, D.L., Horsman, J., Heinis, F.I. (2017). Stress Response Pathways. In: Olsen, A., Gill, M. (eds) Ageing: Lessons from C. elegans. Healthy Ageing and Longevity. Springer, Cham. https://doi.org/10.1007/978-3-319-44703-2_9

Download citation

Publish with us

Policies and ethics