Skip to main content

Integration of Metabolic Signals

  • Chapter
  • First Online:
Book cover Ageing: Lessons from C. elegans

Part of the book series: Healthy Ageing and Longevity ((HAL))

  • 1766 Accesses

Abstract

Over the last 25 years it has become evident that single gene mutations can result in remarkable increases in lifespan. Of the gene mutations identified, the most potent at extending life- and healthspan are those that alter the quantity of food ingested (Avery, Genetics 133 (4):897–917, 1993) and those that disrupt the animals perception of the amount of food ingested (Gottlieb and Ruvkun, Genetics 137 (1):107–120, 1994; Dorman et al, Genetics 141 (4):1399–1406, 1995; Kimura et al, Science 277(5328):942–946, 1997; Lee et al, Curr Biol 11 (24):1950–1957, 2001). These mutations promote longevity, animal health and capacity for stress adaptation (Honda and Honda, Faseb J 13 (11):1385–1393, 1999; Scott et al, Science 296 (5577):2388–2391, 2002; Garsin et al, Science 300 (5627):1921, 2003; Lithgow and Kirkwood, Science 273 (5271):80, 1996), but importantly reveal that an intricate molecular and genetic network exists to integrate diet availability, utilization and animal physiology (Curran and Ruvkun, PLoS Genet 3 (4):e56. doi:10.1371/journal.pgen.0030056, 2007; Dillin et al, Science 298 (5602):2398–2401. doi:10.1126/science.1077780, 2002; Hamilton et al. Genes Dev 19 (13):1544–1555, 2005; Hansen et al, PLoS Genet 1 (1):e17, 2005; Lee et al, Nat Genet 33 (1):40–48, 2003; Tacutu et al, PLoS ONE 7 (10):e48282. doi:10.1371/journal.pone.0048282, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avery L (1993) The genetics of feeding in C. elegans. Genetics 133(4):897–917

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gottlieb S, Ruvkun G (1994) daf-2, daf-16 and daf-23: genetically interacting genes controlling Dauer formation in C. elegans. Genetics 137(1):107–120

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dorman JB, Albinder B, Shroyer T, Kenyon C (1995) The age-1 and daf-2 genes function in a common pathway to control the lifespan of C. elegans. Genetics 141(4):1399–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in C. elegans. Science 277(5328):942–946

    Article  CAS  PubMed  Google Scholar 

  5. Lee RY, Hench J, Ruvkun G (2001) Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 11(24):1950–1957

    Article  CAS  PubMed  Google Scholar 

  6. Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in C. elegans. FASEB J 13(11):1385–1393

    CAS  PubMed  Google Scholar 

  7. Scott BA, Avidan MS, Crowder CM (2002) Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science 296(5577):2388–2391

    Article  CAS  PubMed  Google Scholar 

  8. Garsin DA, Villanueva JM, Begun J, Kim DH, Sifri CD, Calderwood SB, Ruvkun G, Ausubel FM (2003) Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300(5627):1921

    Article  CAS  PubMed  Google Scholar 

  9. Lithgow GJ, Kirkwood TB (1996) Mechanisms and evolution of aging. Science 273(5271):80

    Article  CAS  PubMed  Google Scholar 

  10. Curran S, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3(4), e56. doi:10.1371/journal.pgen.0030056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dillin A, Hsu A, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser A, Kamath R, Ahringer J, Kenyon C (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298(5602):2398–2401. doi:10.1126/science.1077780

    Article  CAS  PubMed  Google Scholar 

  12. Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19(13):1544–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hansen M, Hsu AL, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a C. elegans genomic RNAi screen. PLoS Genet 1(1), e17

    Article  PubMed Central  CAS  Google Scholar 

  14. Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33(1):40–48

    Article  CAS  PubMed  Google Scholar 

  15. Tacutu R, Shore DE, Budovsky A, de Magalhaes JP, Ruvkun G, Fraifeld VE, Curran SP (2012) Prediction of C. elegans longevity genes by human and worm longevity networks. PLoS ONE 7(10), e48282. doi:10.1371/journal.pone.0048282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Efeyan A, Comb WC, Sabatini DM (2015) Nutrient-sensing mechanisms and pathways. Nature 517(7534):302–310. doi:10.1038/nature14190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shtonda BB, Avery L (2006) Dietary choice behavior in C. elegans. J Exp Biol 209(Pt 1):89–102

    Article  PubMed  PubMed Central  Google Scholar 

  18. Khanna A, Johnson DL, Curran SP (2014) Physiological roles for mafr-1 in reproduction and lipid homeostasis. Cell Rep 9(6):2180–2191. doi:10.1016/j.celrep.2014.11.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maier W, Adilov B, Regenass M, Alcedo J (2010) A neuromedin U receptor acts with the sensory system to modulate food type-dependent effects on C. elegans lifespan. PLoS Biol 8(5):e1000376. doi:10.1371/journal.pbio.1000376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Pang S, Curran SP (2014) Adaptive capacity to bacterial diet modulates aging in C. elegans. Cell Metab 19(2):221–231. doi:10.1016/j.cmet.2013.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pang S, Lynn DA, Lo JY, Paek J, Curran SP (2014) SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation. Nat Commun 5:5048. doi:10.1038/ncomms6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiao R, Chun L, Ronan EA, Friedman DI, Liu J, Xu XZ (2015) RNAi interrogation of dietary modulation of development, metabolism, behavior, and aging in C. elegans. Cell Rep 11(7):1123–1133. doi:10.1016/j.celrep.2015.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brooks KK, Liang B, Watts JL (2009) The influence of bacterial diet on fat storage in C. elegans. PLoS ONE 4(10), e7545. doi:10.1371/journal.pone.0007545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G (2009) Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in C. elegans. Genes Dev 23(4):496–511. doi:10.1101/gad.1775409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson TE, Mitchell DH, Kline S, Kemal R, Foy J (1984) Arresting development arrests aging in the nematode C. elegans. Mech Ageing Dev 28(1):23–40

    Article  CAS  PubMed  Google Scholar 

  26. Lakowski B, Hekimi S (1998) The genetics of caloric restriction in C. elegans. Proc Natl Acad Sci U S A 95(22):13091–13096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 77:727–754. doi:10.1146/annurev.biochem.77.061206.171059

    Article  CAS  PubMed  Google Scholar 

  28. Weindruch R, Walford RL, Fligiel S, Guthrie D (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 116(4):641–654

    CAS  PubMed  Google Scholar 

  29. Troemel ER, Kimmel BE, Bargmann CI (1997) Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91(2):161–169

    Article  CAS  PubMed  Google Scholar 

  30. Pereira S, van der Kooy D (2012) Two forms of learning following training to a single odorant in C. elegans AWC neurons. J Neurosci 32(26):9035–9044. doi:10.1523/JNEUROSCI.4221-11.2012

    Article  CAS  PubMed  Google Scholar 

  31. Pradel E, Zhang Y, Pujol N, Matsuyama T, Bargmann CI, Ewbank JJ (2007) Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by C. elegans. Proc Natl Acad Sci U S A 104(7):2295–2300. doi:10.1073/pnas.0610281104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meisel JD, Kim DH (2014) Behavioral avoidance of pathogenic bacteria by C. elegans. Trends Immunol 35(10):465–470. doi:10.1016/j.it.2014.08.008

    Article  CAS  PubMed  Google Scholar 

  33. Schulenburg H, Ewbank JJ (2007) The genetics of pathogen avoidance in C. elegans. Mol Microbiol 66(3):563–570. doi:10.1111/j.1365-2958.2007.05946.x

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Lu H, Bargmann CI (2005) Pathogenic bacteria induce aversive olfactory learning in C. elegans. Nature 438(7065):179–184

    Article  CAS  PubMed  Google Scholar 

  35. Couillault C, Ewbank JJ (2002) Diverse bacteria are pathogens of C. elegans. Infect Immun 70(8):4705–4707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clark LC, Hodgkin J (2014) Commensals, probiotics and pathogens in the C. elegans model. Cell Microbiol 16(1):27–38. doi:10.1111/cmi.12234

    Article  CAS  PubMed  Google Scholar 

  37. Gusarov I, Gautier L, Smolentseva O, Shamovsky I, Eremina S, Mironov A, Nudler E (2013) Bacterial nitric oxide extends the lifespan of C. elegans. Cell 152(4):818–830. doi:10.1016/j.cell.2012.12.043

    Article  CAS  PubMed  Google Scholar 

  38. Beale E, Li G, Tan MW, Rumbaugh KP (2006) C. elegans senses bacterial autoinducers. Appl Environ Microbiol 72(7):5135–5137. doi:10.1128/AEM.00611-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Melo JA, Ruvkun G (2012) Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 149(2):452–466. doi:10.1016/j.cell.2012.02.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Breen GA, Miller DL, Holmans PL, Welch G (1986) Mitochondrial DNA of two independent oligomycin-resistant Chinese hamster ovary cell lines contains a single nucleotide change in the ATPase 6 gene. J Biol Chem 261(25):11680–11685

    CAS  PubMed  Google Scholar 

  41. Huss M, Ingenhorst G, Konig S, Gassel M, Drose S, Zeeck A, Altendorf K, Wieczorek H (2002) Concanamycin A, the specific inhibitor of V-ATPases, binds to the V(o) subunit c. J Biol Chem 277(43):40544–40548

    Article  CAS  PubMed  Google Scholar 

  42. Tercero JA, Espinosa JC, Lacalle RA, Jimenez A (1996) The biosynthetic pathway of the aminonucleoside antibiotic puromycin, as deduced from the molecular analysis of the pur cluster of Streptomyces alboniger. J Biol Chem 271(3):1579–1590

    Article  CAS  PubMed  Google Scholar 

  43. Avery L, Shtonda BB (2003) Food transport in the C. elegans pharynx. J Exp Biol 206(Pt 14):2441–2457

    Article  PubMed  PubMed Central  Google Scholar 

  44. Avery L, Bargmann CI, Horvitz HR (1993) The C. elegans unc-31 gene affects multiple nervous system-controlled functions. Genetics 134(2):455–464

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chiang JT, Steciuk M, Shtonda B, Avery L (2006) Evolution of pharyngeal behaviors and neuronal functions in free-living soil nematodes. J Exp Biol 209(Pt 10):1859–1873. doi:10.1242/jeb.02165

    Article  PubMed  Google Scholar 

  46. Kang C, Avery L (2009) Systemic regulation of starvation response in C. elegans. Genes Dev 23(1):12–17. doi:10.1101/gad.1723409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cabreiro F, Gems D (2013) Worms need microbes too: microbiota, health and aging in C. elegans. EMBO Mol Med 5(9):1300–1310. doi:10.1002/emmm.201100972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in C. elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161(3):1101–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002) No reduction of metabolic rate in food restricted C. elegans. Exp Gerontol 37(12):1359–1369

    Article  PubMed  Google Scholar 

  50. Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002) Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in C. elegans. Exp Gerontol 37(12):1371–1378

    Article  PubMed  Google Scholar 

  51. Moeller AH, Ochman H (2014) Microbiomes are true to type. Proc Natl Acad Sci U S A 111(26):9372–9373. doi:10.1073/pnas.1408654111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Troemel E, Valdivia RH (2014) Cell biology at the host-microbe interface. Mol Biol Cell 25(6):729. doi:10.1091/mbc.E13-11-0668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Portal-Celhay C, Blaser MJ (2012) Competition and resilience between founder and introduced bacteria in the C. elegans gut. Infect Immun 80(3):1288–1299. doi:10.1128/IAI.05522-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Portal-Celhay C, Bradley ER, Blaser MJ (2012) Control of intestinal bacterial proliferation in regulation of lifespan in C. elegans. BMC Microbiol 12:49. doi:10.1186/1471-2180-12-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164(3):337–340. doi:10.1016/j.cell.2016.01.013

    Article  CAS  PubMed  Google Scholar 

  56. Cohen LB, Troemel ER (2015) Microbial pathogenesis and host defense in the nematode C. elegans. Curr Opin Microbiol 23:94–101. doi:10.1016/j.mib.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  57. Arvanitis M, Glavis-Bloom J, Mylonakis E (2013) C. elegans for anti-infective discovery. Curr Opin Pharmacol 13(5):769–774. doi:10.1016/j.coph.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  58. Kim DH (2013) Bacteria and the aging and longevity of C. elegans. Annu Rev Genet 47:233–246. doi:10.1146/annurev-genet-111212-133352

    Article  CAS  PubMed  Google Scholar 

  59. Brenner S (1974) The genetics of C. elegans. Genetics 77(1):71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sulston JE, Brenner S (1974) The DNA of C. elegans. Genetics 77(1):95–104

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee SS, Ruvkun G (2002) Longevity: don’t hold your breath. Nature 418(6895):287–288

    Article  CAS  PubMed  Google Scholar 

  62. Paek J, Lo JY, Narasimhan SD, Nguyen TN, Glover-Cutter K, Robida-Stubbs S, Suzuki T, Yamamoto M, Blackwell TK, Curran SP (2012) Mitochondrial SKN-1/Nrf mediates a conserved starvation response. Cell Metab 16(4):526–537. doi:10.1016/j.cmet.2012.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gracida X, Eckmann CR (2013) Fertility and germline stem cell maintenance under different diets requires nhr-114/HNF4 in C. elegans. Curr Biol 23(7):607–613. doi:10.1016/j.cub.2013.02.034

    Article  CAS  PubMed  Google Scholar 

  64. Antebi A, Culotti JG, Hedgecock EM (1998) daf-12 regulates developmental age and the dauer alternative in C. elegans. Development 125(7):1191–1205

    CAS  PubMed  Google Scholar 

  65. Babar P, Adamson C, Walker GA, Walker DW, Lithgow GJ (1999) P13-kinase inhibition induces dauer formation, thermotolerance and longevity in C. elegans. Neurobiol Aging 20(5):513–519

    Article  CAS  PubMed  Google Scholar 

  66. Burnell AM, Houthoofd K, O’Hanlon K, Vanfleteren JR (2005) Alternate metabolism during the dauer stage of the nematode C. elegans. Exp Gerontol 40(11):850–856

    Article  CAS  PubMed  Google Scholar 

  67. Cassada R, Russell R (1975) The dauerlarva, a post-embryonic developmental variant of the nematode C. elegans. Dev Biol 46(2):326–342

    Article  CAS  PubMed  Google Scholar 

  68. Golden JW, Riddle DL (1984) The C. elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev Biol 102(2):368–378

    Article  CAS  PubMed  Google Scholar 

  69. Hu PJ (2007) Dauer. WormBook:1–19. doi:10.1895/wormbook.1.144.1

  70. Inoue T, Thomas J (2000) Suppressors of transforming growth factor-beta pathway mutants in the C. elegans dauer formation pathway. Genetics 156(3):1035–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Inoue T, Thomas J (2000) Targets of TGF-beta signaling in C. elegans dauer formation. Dev Biol 217(1):192–204. doi:10.1006/dbio.1999.9545

    Article  CAS  PubMed  Google Scholar 

  72. Liu T, Zimmerman KK, Patterson GI (2004) Regulation of signaling genes by TGFbeta during entry into dauer diapause in C. elegans. BMC Dev Biol 4:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. McElwee JJ, Schuster E, Blanc E, Thomas JH, Gems D (2004) Shared transcriptional signature in C. elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J Biol Chem 279(43):44533–44543

    Article  CAS  PubMed  Google Scholar 

  74. Shaw WM, Luo S, Landis J, Ashraf J, Murphy CT (2007) The C. elegans TGF-beta Dauer pathway regulates longevity via insulin signaling. Curr Biol 17(19):1635–1645. doi:10.1016/j.cub.2007.08.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thomas JH, Birnby DA, Vowels JJ (1993) Evidence for parallel processing of sensory information controlling dauer formation in C. elegans. Genetics 134(4):1105–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vowels JJ, Thomas JH (1992) Genetic analysis of chemosensory control of dauer formation in C. elegans. Genetics 130(1):105–123

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cahill GF Jr (2006) Fuel metabolism in starvation. Annu Rev Nutr 26:1–22. doi:10.1146/annurev.nutr.26.061505.111258

    Article  CAS  PubMed  Google Scholar 

  78. An J, Blackwell T (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17(15):1882–1893. doi:10.1101/gad.1107803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. An JH, Vranas K, Lucke M, Inoue H, Hisamoto N, Matsumoto K, Blackwell TK (2005) Regulation of the C. elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. Proc Natl Acad Sci U S A 102(45):16275–16280. doi:10.1073/pnas.0508105102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Blackwell TK, Bowerman B, Priess JR, Weintraub H (1994) Formation of a monomeric DNA binding domain by Skn-1 bZIP and homeodomain elements. Science 266(5185):621–628

    Article  CAS  PubMed  Google Scholar 

  81. Glover-Cutter KM, Lin S, Blackwell TK (2013) Integration of the unfolded protein and oxidative stress responses through SKN-1/Nrf. PLoS Genet 9(9), e1003701. doi:10.1371/journal.pgen.1003701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kahn NW, Rea SL, Moyle S, Kell A, Johnson TE (2008) Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in C. elegans. Biochem J 409(1):205–213. doi:10.1042/BJ20070521

    Article  CAS  PubMed  Google Scholar 

  83. Li X, Matilainen O, Jin C, Glover-Cutter KM, Holmberg CI, Blackwell TK (2011) Specific SKN-1/Nrf stress responses to perturbations in translation elongation and proteasome activity. PLoS Genet 7(6), e1002119. doi:10.1371/journal.pgen.1002119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Papp D, Csermely P, Soti C (2012) A role for SKN-1/Nrf in pathogen resistance and immunosenescence in C. elegans. PLoS Pathog 8(4), e1002673. doi:10.1371/journal.ppat.1002673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Park SK, Tedesco PM, Johnson TE (2009) Oxidative stress and longevity in C. elegans as mediated by SKN-1. Aging Cell 8(3):258–269. doi:10.1111/j.1474-9726.2009.00473.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Przybysz AJ, Choe KP, Roberts LJ, Strange K (2009) Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of C. elegans to the xenobiotic juglone. Mech Ageing Dev 130(6):357–369. doi:10.1016/j.mad.2009.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Steinbaugh MJ, Narasimhan SD, Robida-Stubbs S, Moronetti Mazzeo LE, Dreyfuss JM, Hourihan JM, Raghavan P, Operana TN, Esmaillie R, Blackwell TK (2015) Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence. Elife 4. doi:10.7554/eLife.07836

  88. Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132(6):1025–1038. doi:10.1016/j.cell.2008.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang J, Robida-Stubbs S, Tullet JM, Rual JF, Vidal M, Blackwell TK (2010) RNAi screening implicates a SKN-1-dependent transcriptional response in stress resistance and longevity deriving from translation inhibition. PLoS Genet 6(8). doi:10.1371/journal.pgen.1001048

  90. Choe KP, Przybysz AJ, Strange K (2009) The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in C. elegans. Mol Cell Biol 29(10):2704–2715. doi:10.1128/MCB.01811-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Inoue H, Hisamoto N, An JH, Oliveira RP, Nishida E, Blackwell TK, Matsumoto K (2005) The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev 19(19):2278–2283. doi:10.1101/gad.1324805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kell A, Ventura N, Kahn N, Johnson TE (2007) Activation of SKN-1 by novel kinases in C. elegans. Free Radic Biol Med 43(11):1560–1566. doi:10.1016/j.freeradbiomed.2007.08.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Okuyama T, Inoue H, Ookuma S, Satoh T, Kano K, Honjoh S, Hisamoto N, Matsumoto K, Nishida E (2010) The ERK-MAPK pathway regulates longevity through SKN-1 and insulin-like signaling in C. elegans. J Biol Chem 285(39):30274–30281. doi:10.1074/jbc.M110.146274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Oliveira RP, Porter Abate J, Dilks K, Landis J, Ashraf J, Murphy CT, Blackwell TK (2009) Condition-adapted stress and longevity gene regulation by C. elegans SKN-1/Nrf. Aging Cell 8(5):524–541. doi:10.1111/j.1474-9726.2009.00501.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Onken B, Driscoll M (2010) Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS ONE 5(1), e8758. doi:10.1371/journal.pone.0008758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Walker AK, See R, Batchelder C, Kophengnavong T, Gronniger JT, Shi Y, Blackwell TK (2000) A conserved transcription motif suggesting functional parallels between C. elegans SKN-1 and Cap‘n’Collar-related basic leucine zipper proteins. J Biol Chem 275(29):22166–22171. doi:10.1074/jbc.M001746200

    Article  CAS  PubMed  Google Scholar 

  97. Greer EL, Brunet A (2009) Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8(2):113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Taubert S, Hansen M, Van Gilst MR, Cooper SB, Yamamoto KR (2008) The Mediator subunit MDT-15 confers metabolic adaptation to ingested material. PLoS Genet 4(2), e1000021. doi:10.1371/journal.pgen.1000021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Taubert S, Van Gilst MR, Hansen M, Yamamoto KR (2006) A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev 20(9):1137–1149. doi:10.1101/gad.1395406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lee SJ, Murphy CT, Kenyon C (2009) Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab 10(5):379–391. doi:10.1016/j.cmet.2009.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends C. elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6(4):280–293. doi:10.1016/j.cmet.2007.08.011

    Article  CAS  PubMed  Google Scholar 

  102. Xu J, Kulkarni SR, Donepudi AC, More VR, Slitt AL (2012) Enhanced Nrf2 activity worsens insulin resistance, impairs lipid accumulation in adipose tissue, and increases hepatic steatosis in leptin-deficient mice. Diabetes 61(12):3208–3218. doi:10.2337/db11-1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang DD (2010) The Nrf2-Keap1-ARE signaling pathway: the regulation and dual function of Nrf2 in cancer. Antioxid Redox Signal 13(11):1623–1626. doi:10.1089/ars.2010.3301

    Article  CAS  PubMed  Google Scholar 

  104. Baird L, Dinkova-Kostova AT (2011) The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 85(4):241–272. doi:10.1007/s00204-011-0674-5

    Article  CAS  PubMed  Google Scholar 

  105. Dinkova-Kostova AT, Wang XJ (2011) Induction of the Keap1/Nrf2/ARE pathway by oxidizable diphenols. Chem Biol Interact 192(1–2):101–106. doi:10.1016/j.cbi.2010.09.010

    Article  CAS  PubMed  Google Scholar 

  106. Kansanen E, Bonacci G, Schopfer FJ, Kuosmanen SM, Tong KI, Leinonen H, Woodcock SR, Yamamoto M, Carlberg C, Yla-Herttuala S, Freeman BA, Levonen AL (2011) Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J Biol Chem 286(16):14019–14027. doi:10.1074/jbc.M110.190710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Slocum SL, Kensler TW (2011) Nrf2: control of sensitivity to carcinogens. Arch Toxicol 85(4):273–284. doi:10.1007/s00204-011-0675-4

    Article  CAS  PubMed  Google Scholar 

  108. Tkachev VO, Menshchikova EB, Zenkov NK (2011) Mechanism of the Nrf2/Keap1/ARE signaling system. Biochem Biokhimiia 76(4):407–422

    Article  CAS  Google Scholar 

  109. Zarse K, Schmeisser S, Groth M, Priebe S, Beuster G, Kuhlow D, Guthke R, Platzer M, Kahn CR, Ristow M (2012) Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab 15(4):451–465. doi:10.1016/j.cmet.2012.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cypser J, Johnson TE (2001) Hormesis extends the correlation between stress resistance and life span in long-lived mutants of C. elegans. Hum Exp Toxicol 20(6):295–296; discussion 319–220

    Article  CAS  PubMed  Google Scholar 

  111. Cypser JR, Johnson TE (2002) Multiple stressors in C. elegans induce stress hormesis and extended longevity. J Gerontol A Biol Sci Med Sci 57(3):B109–B114

    Article  PubMed  Google Scholar 

  112. Cypser JR, Tedesco P, Johnson TE (2006) Hormesis and aging in C. elegans. Exp Gerontol 41(10):935–939

    Google Scholar 

  113. Calabrese EJ, Iavicoli I, Calabrese V (2012) Hormesis: why it is important to biogerontologists. Biogerontology 13(3):215–235. doi:10.1007/s10522-012-9374-7

    Article  PubMed  Google Scholar 

  114. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48(2):158–167. doi:10.1016/j.molcel.2012.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yun J, Finkel T (2014) Mitohormesis. Cell Metab 19(5):757–766. doi:10.1016/j.cmet.2014.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Salganik RI (2001) The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr 20(5 Suppl):464S–472S; discussion 473S–475S

    Article  CAS  PubMed  Google Scholar 

  117. McCormick MA, Kennedy BK (2012) Genome-scale studies of aging: challenges and opportunities. Curr Genom 13(7):500–507. doi:10.2174/138920212803251454

    Article  CAS  Google Scholar 

  118. Lapierre LR, Hansen M (2012) Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol Metab: TEM 23(12):637–644. doi:10.1016/j.tem.2012.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cypser JR, Kitzenberg D, Park SK (2013) Dietary restriction in C. elegans: recent advances. Exp Gerontol 48(10):1014–1017. doi:10.1016/j.exger.2013.02.018

    Article  CAS  PubMed  Google Scholar 

  120. Houthoofd K, Gems D, Johnson TE, Vanfleteren JR (2007) Dietary restriction in the nematode C. elegans. Interdiscip Top Gerontol 35:98–114

    CAS  PubMed  Google Scholar 

  121. Mizunuma M, Neumann-Haefelin E, Moroz N, Li Y, Blackwell TK (2014) mTORC2-SGK-1 acts in two environmentally responsive pathways with opposing effects on longevity. Aging Cell 13(5):869–878. doi:10.1111/acel.12248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fukuyama M, Sakuma K, Park R, Kasuga H, Nagaya R, Atsumi Y, Shimomura Y, Takahashi S, Kajiho H, Rougvie A, Kontani K, Katada T (2012) C. elegans AMPKs promote survival and arrest germline development during nutrient stress. Biol Open 1(10):929–936. doi:10.1242/bio.2012836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jang WG, Kim EJ, Lee KN, Son HJ, Koh JT (2011) AMP-activated protein kinase (AMPK) positively regulates osteoblast differentiation via induction of Dlx5-dependent Runx2 expression in MC3T3E1 cells. Biochem Biophys Res Commun 404(4):1004–1009. doi:10.1016/j.bbrc.2010.12.099

    Article  CAS  PubMed  Google Scholar 

  124. Mair W, Morantte I, Rodrigues AP, Manning G, Montminy M, Shaw RJ, Dillin A (2011) Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470(7334):404–408. doi:10.1038/nature09706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Brownlee DJ, Fairweather I (1999) Exploring the neurotransmitter labyrinth in nematodes. Trends Neurosci 22(1):16–24

    Article  CAS  PubMed  Google Scholar 

  126. Brighton PJ, Szekeres PG, Willars GB (2004) Neuromedin U and its receptors: structure, function, and physiological roles. Pharmacol Rev 56(2):231–248. doi:10.1124/pr.56.2.3

    Article  CAS  PubMed  Google Scholar 

  127. Terhzaz S, Cabrero P, Robben JH, Radford JC, Hudson BD, Milligan G, Dow JA, Davies SA (2012) Mechanism and function of Drosophila capa GPCR: a desiccation stress-responsive receptor with functional homology to human neuromedin U receptor. PLoS ONE 7(1), e29897. doi:10.1371/journal.pone.0029897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Choi MY, Rafaeli A, Jurenka RA (2001) Pyrokinin/PBAN-like peptides in the central nervous system of Drosophila melanogaster. Cell Tissue Res 306(3):459–465. doi:10.1007/s00441-001-0467-x

    Article  CAS  PubMed  Google Scholar 

  129. Lindemans M, Janssen T, Husson SJ, Meelkop E, Temmerman L, Clynen E, Mertens I, Schoofs L (2009) A neuromedin-pyrokinin-like neuropeptide signaling system in C. elegans. Biochem Biophys Res Commun 379(3):760–764. doi:10.1016/j.bbrc.2008.12.121

    Article  CAS  PubMed  Google Scholar 

  130. Li C, Nelson LS, Kim K, Nathoo A, Hart AC (1999) Neuropeptide gene families in the nematode C. elegans. Ann N Y Acad Sci 897:239–252

    Article  CAS  PubMed  Google Scholar 

  131. Husson SJ, Mertens I, Janssen T, Lindemans M, Schoofs L (2007) Neuropeptidergic signaling in the nematode C. elegans. Prog Neurobiol 82(1):33–55. doi:10.1016/j.pneurobio.2007.01.006

    Article  CAS  PubMed  Google Scholar 

  132. Nathoo AN, Moeller RA, Westlund BA, Hart AC (2001) Identification of neuropeptide-like protein gene families in C. elegans and other species. Proc Natl Acad Sci U S A 98(24):14000–14005. doi:10.1073/pnas.241231298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. O’Rourke EJ, Ruvkun G (2013) MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 15(6):668–676. doi:10.1038/ncb2741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Kotsis V, Nilsson P, Grassi G, Mancia G, Redon J, Luft F, Schmieder R, Engeli S, Stabouli S, Antza C, Pall D, Schlaich M, Jordan J, Wg on Obesity DtHRPESoH (2015) New developments in the pathogenesis of obesity-induced hypertension. J Hypertens 33(8):1499–1508. doi:10.1097/HJH.0000000000000645

    Article  CAS  PubMed  Google Scholar 

  135. Hawkes C, Smith TG, Jewell J, Wardle J, Hammond RA, Friel S, Thow AM, Kain J (2015) Smart food policies for obesity prevention. Lancet 385(9985):2410–2421. doi:10.1016/S0140-6736(14)61745-1

    Article  PubMed  Google Scholar 

  136. Phillips C, Lopez-Miranda J, Perez-Jimenez F, McManus R, Roche HM (2006) Genetic and nutrient determinants of the metabolic syndrome. Curr Opin Cardiol 21(3):185–193. doi:10.1097/01.hco.0000221579.25878.11

    Article  PubMed  Google Scholar 

  137. Phillips CM (2013) Nutrigenetics and metabolic disease: current status and implications for personalised nutrition. Nutrients 5(1):32–57. doi:10.3390/nu5010032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321. doi:10.1016/j.diabres.2011.10.029

    Article  PubMed  Google Scholar 

  139. Rinella ME (2015) Nonalcoholic fatty liver disease: a systematic review. JAMA 313(22):2263–2273. doi:10.1001/jama.2015.5370

    Article  CAS  PubMed  Google Scholar 

  140. Maggard-Gibbons M, Maglione M, Livhits M, Ewing B, Maher AR, Hu J, Li Z, Shekelle PG (2013) Bariatric surgery for weight loss and glycemic control in nonmorbidly obese adults with diabetes: a systematic review. JAMA 309(21):2250–2261. doi:10.1001/jama.2013.4851

    Article  CAS  PubMed  Google Scholar 

  141. Rechavi O, Houri-Ze’evi L, Anava S, Goh WS, Kerk SY, Hannon GJ, Hobert O (2014) Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158(2):277–287. doi:10.1016/j.cell.2014.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pang S, Curran SP (2012) Longevity and the long arm of epigenetics: acquired parental marks influence lifespan across several generations. Bioessays 34(8):652–654. doi:10.1002/bies.201200046

    Article  PubMed  PubMed Central  Google Scholar 

  143. Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A (2011) Transgenerational epigenetic inheritance of longevity in C. elegans. Nature 479(7373):365–371. doi:10.1038/nature10572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zheng J, Greenway FL (2012) C. elegans as a model for obesity research. Int J Obes 36(2):186–194. doi:10.1038/ijo.2011.93

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean P. Curran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lynn, D.A., Curran, S.P. (2017). Integration of Metabolic Signals. In: Olsen, A., Gill, M. (eds) Ageing: Lessons from C. elegans. Healthy Ageing and Longevity. Springer, Cham. https://doi.org/10.1007/978-3-319-44703-2_17

Download citation

Publish with us

Policies and ethics