Skip to main content

Genome Stability and Ageing

  • Chapter
  • First Online:
Ageing: Lessons from C. elegans

Part of the book series: Healthy Ageing and Longevity ((HAL))

Abstract

Ageing is defined as the progressive attrition of tissue/organ function resulting in an increased susceptibility to disease and death. The DNA mutation and damage theory of ageing posits that the accrual of genetic damage over time is the underlying cause of ageing. Evidence for this theory stems from the fact that numerous human progeroid syndromes are caused by inherited defects in genome maintenance mechanisms, linking excess genetic damage with accelerated ageing. These diseases have been modelled in mice and other organisms. However, the molecular mechanism by which genomic instability drives ageing is currently not known. The nematode, C. elegans, is a genetically tractable, well-studied model organism for investigating mechanisms of ageing and DNA repair pathways identified in mammalian systems are well conserved in the worm. Furthermore, proliferating and post-mitotic cells, which have distinct responses to genomic instability, are clearly delineated in the worm. Thus worms provide an opportunity to study the importance of genomic stability in each of these compartments in the context of a whole organism. Genomic instability can interfere with transcription, trigger apoptosis, attenuate proliferative capacity, and cause metabolic changes. Here, we first examine the DNA repair pathways that are conserved between worms and mammals, with an overview of the spatial and temporal activity of each of these repair pathways. This chapter then explores evidence from studies in the nematode that genomic instability, healthspan and organismal ageing are linked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meier B et al (2014) C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency. Genome Res 24(10):1624–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Drake JW et al (1998) Rates of spontaneous mutation. Genetics 148(4):1667–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Klass M, Nguyen PN, Dechavigny A (1983) Age-correlated changes in the DNA template in the nematode C. elegans. Mech Ageing Dev 22(3–4):253–263

    Article  CAS  PubMed  Google Scholar 

  4. Melov S et al (1995) Increased frequency of deletions in the mitochondrial genome with age of C. elegans. Nucleic Acids Res 23(8):1419–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jacob KD et al (2013) Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mech Ageing Dev 134(3–4):139–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yen TC et al (1992) Age-dependent 6 kb deletion in human liver mitochondrial DNA. Biochem Int 26(3):457–468

    CAS  PubMed  Google Scholar 

  7. Bratic A, Larsson NG (2013) The role of mitochondria in aging. J Clin Invest 123(3):951–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Friedberg EG, Wood RD (1996) DNA excision repair path ways. In: Pamphilis MLD (ed) DNA replication in eukaiyotic cells. Cold Spring Harbor Laboratory Press: Gold Spring Harbor, NY, pp 249–269

    Google Scholar 

  9. Stergiou L, Hengartner MO (2004) Death and more: DNA damage response pathways in the nematode C. elegans. Cell Death Differ 11(1):21–28

    Article  CAS  PubMed  Google Scholar 

  10. Ho TV, Scharer OD (2010) Translesion DNA synthesis polymerases in DNA interstrand crosslink repair. Environ Mol Mutagen 51(6):552–566

    CAS  PubMed  Google Scholar 

  11. Roerink SF et al (2012) A broad requirement for TLS polymerases eta and kappa, and interacting sumoylation and nuclear pore proteins, in lesion bypass during C. elegans embryogenesis. PLoS Genet 8(6):e1002800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lans H, Vermeulen W (2015) Tissue specific response to DNA damage: C. elegans as role model. DNA Repair (Amst) 32:141–148

    Article  CAS  Google Scholar 

  13. d’Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8(7):512–522

    Article  PubMed  Google Scholar 

  14. Baker DJ et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530(7589):184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dmitrieva NI, Burg MB (2007) High NaCl promotes cellular senescence. Cell Cycle 6(24):3108–3113

    Article  CAS  PubMed  Google Scholar 

  16. Ishii N et al (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394(6694):694–697

    Article  CAS  PubMed  Google Scholar 

  17. Senoo-Matsuda N et al (2003) A complex II defect affects mitochondrial structure, leading to ced-3- and ced-4-dependent apoptosis and aging. J Biol Chem 278(24):22031–22036

    Article  CAS  PubMed  Google Scholar 

  18. Senoo-Matsuda N et al (2001) A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in C. elegans. J Biol Chem 276(45):41553–41558

    Article  CAS  PubMed  Google Scholar 

  19. Hartman P et al (2004) Mitochondrial oxidative stress can lead to nuclear hypermutability. Mech Ageing Dev 125(6):417–420

    Article  CAS  PubMed  Google Scholar 

  20. Hartman PS, Herman RK (1982) Radiation-sensitive mutants of C. elegans. Genetics 102(2):159–178

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson TE, Hartman PS (1988) Radiation effects on life span in C. elegans. J Gerontol 43(5):B137–B141

    Article  CAS  PubMed  Google Scholar 

  22. Hartman PS et al (1988) Radiation sensitivity and DNA repair in C. elegans strains with different mean life spans. Mutat Res 208(2):77–82

    Article  CAS  PubMed  Google Scholar 

  23. MacRae SL et al (2015) DNA repair in species with extreme lifespan differences. Aging (Albany NY) 7(12):1171–1184

    Article  Google Scholar 

  24. Salmon AB, Ljungman M, Miller RA (2008) Cells from long-lived mutant mice exhibit enhanced repair of ultraviolet lesions. J Gerontol A Biol Sci Med Sci 63(3):219–231

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hyun M et al (2008) Longevity and resistance to stress correlate with DNA repair capacity in C. elegans. Nucleic Acids Res 36(4):1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gurkar AU, Niedernhofer LJ (2015) Comparison of mice with accelerated aging caused by distinct mechanisms. Exp Gerontol 68:43–50

    Article  PubMed  PubMed Central  Google Scholar 

  27. Navarro CL, Cau P, Levy N (2006) Molecular bases of progeroid syndromes. Hum Mol Genet 15(Spec No 2):R151–R161

    Article  CAS  PubMed  Google Scholar 

  28. Shatilla A et al (2005) Identification of two apurinic/apyrimidinic endonucleases from C. elegans by cross-species complementation. DNA Repair (Amst) 4(6):655–670

    Article  CAS  Google Scholar 

  29. Schlotterer A et al (2010) Apurinic/apyrimidinic endonuclease 1, p53, and thioredoxin are linked in control of aging in C. elegans. Aging Cell 9(3):420–432

    Article  CAS  PubMed  Google Scholar 

  30. Kato Y et al (2015) C. elegans EXO-3 contributes to longevity and reproduction: differential roles in somatic cells and germ cells. Mutat Res 772:46–54

    Article  CAS  PubMed  Google Scholar 

  31. Morinaga H et al (2009) Purification and characterization of C. elegans NTH, a homolog of human endonuclease III: essential role of N-terminal region. DNA Repair (Amst) 8(7):844–851

    Article  CAS  Google Scholar 

  32. Fensgard O et al (2010) A two-tiered compensatory response to loss of DNA repair modulates aging and stress response pathways. Aging (Albany NY) 2(3):133–159

    Article  Google Scholar 

  33. Hunter SE et al (2012) In vivo repair of alkylating and oxidative DNA damage in the mitochondrial and nuclear genomes of wild-type and glycosylase-deficient C. elegans. DNA Repair (Amst) 11(11):857–863

    Article  CAS  Google Scholar 

  34. Zakaria C et al (2010) C. elegans APN-1 plays a vital role in maintaining genome stability. DNA Repair (Amst) 9(2):169–176

    Article  CAS  Google Scholar 

  35. Meyer JN et al (2007) Decline of nucleotide excision repair capacity in aging C. elegans. Genome Biol 8(5):R70

    Article  PubMed  PubMed Central  Google Scholar 

  36. de Vries A et al (1995) Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377(6545):169–173

    Article  PubMed  Google Scholar 

  37. Arczewska KD et al (2013) Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1. Nucleic Acids Res 41(10):5368–5381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lipinski LJ et al (1999) Repair of oxidative DNA base lesions induced by fluorescent light is defective in xeroderma pigmentosum group A cells. Nucleic Acids Res 27(15):3153–3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cooke MS et al (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214

    Article  CAS  PubMed  Google Scholar 

  40. Lans H et al (2013) DNA damage leads to progressive replicative decline but extends the life span of long-lived mutant animals. Cell Death Differ 20(12):1709–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lans H et al (2010) Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development. PLoS Genet 6(5):e1000941

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kenyon C et al (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464

    Article  CAS  PubMed  Google Scholar 

  43. Johnson TE (1990) Increased life-span of age-1 mutants in C. elegans and lower Gompertz rate of aging. Science 249(4971):908–912

    Article  CAS  PubMed  Google Scholar 

  44. Mueller MM et al (2014) DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage. Nat Cell Biol 16(12):1168–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wicky C et al (2004) Multiple genetic pathways involving the C. elegans Bloom’s syndrome genes him-6, rad-51, and top-3 are needed to maintain genome stability in the germ line. Mol Cell Biol 24(11):5016–5027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. German J (1993) Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine (Baltimore) 72(6):393–406

    Article  CAS  Google Scholar 

  47. Grabowski MM, Svrzikapa N, Tissenbaum HA (2005) Bloom syndrome ortholog HIM-6 maintains genomic stability in C. elegans. Mech Ageing Dev 126(12):1314–1321

    Article  CAS  PubMed  Google Scholar 

  48. Lee KH et al (2003) Dna2 requirement for normal reproduction of C. elegans is temperature-dependent. Mol Cells 15(1):81–86

    CAS  PubMed  Google Scholar 

  49. Lee MH et al (2003) C. elegans dna-2 is involved in DNA repair and is essential for germ-line development. FEBS Lett 555(2):250–256

    Article  CAS  PubMed  Google Scholar 

  50. Hu Y et al (2007) RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 21(23):3073–3084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Paliwal S et al (2014) Human RECQ5 helicase promotes repair of DNA double-strand breaks by synthesis-dependent strand annealing. Nucleic Acids Res 42(4):2380–2390

    Article  CAS  PubMed  Google Scholar 

  52. Jeong YS et al (2003) Deficiency of C. elegans RecQ5 homologue reduces life span and increases sensitivity to ionizing radiation. DNA Repair (Amst) 2(12):1309–1319

    Article  CAS  Google Scholar 

  53. Vermeulen W et al (2001) A temperature-sensitive disorder in basal transcription and DNA repair in humans. Nat Genet 27(3):299–303

    Article  CAS  PubMed  Google Scholar 

  54. Vaidya A et al (2014) Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age. PLoS Genet 10(7):e1004511

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li H et al (2007) Deletion of Ku70, Ku80, or both causes early aging without substantially increased cancer. Mol Cell Biol 27(23):8205–8214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McColl G, Vantipalli MC, Lithgow GJ (2005) The C. elegans ortholog of mammalian Ku70, interacts with insulin-like signaling to modulate stress resistance and life span. FASEB J 19(12):1716–1718

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Vogel H et al (1999) Deletion of Ku86 causes early onset of senescence in mice. Proc Natl Acad Sci U S A 96(19):10770–10775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cooper MP et al (2000) Ku complex interacts with and stimulates the Werner protein. Genes Dev 14(8):907–912

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Shen JC, Loeb LA (2000) The Werner syndrome gene: the molecular basis of RecQ helicase-deficiency diseases. Trends Genet 16(5):213–220

    Article  CAS  PubMed  Google Scholar 

  60. Crabbe L et al (2004) Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306(5703):1951–1953

    Article  CAS  PubMed  Google Scholar 

  61. Lee SJ et al (2004) A Werner syndrome protein homolog affects C. elegans development, growth rate, life span and sensitivity to DNA damage by acting at a DNA damage checkpoint. Development 131(11):2565–2575

    Article  CAS  PubMed  Google Scholar 

  62. Dallaire A et al (2012) Down regulation of miR-124 in both Werner syndrome DNA helicase mutant mice and mutant C. elegans wrn-1 reveals the importance of this microRNA in accelerated aging. Aging (Albany NY) 4(9):636–647

    Article  CAS  Google Scholar 

  63. Vermezovic J et al (2012) Differential regulation of DNA damage response activation between somatic and germline cells in C. elegans. Cell Death Differ 19(11):1847–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sperka T, Wang J, Rudolph KL (2012) DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol 13(9):579–590

    Article  CAS  PubMed  Google Scholar 

  65. Lindahl T et al (1995) Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci 20(10):405–411

    Article  CAS  PubMed  Google Scholar 

  66. Kedar PS et al (2008) Interaction between PARP-1 and ATR in mouse fibroblasts is blocked by PARP inhibition. DNA Repair (Amst) 7(11):1787–1798

    Article  CAS  Google Scholar 

  67. Fang EF et al (2014) Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157(4):882–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mouchiroud L et al (2013) The NAD(+)/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154(2):430–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Canto C et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rodgers JT et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118

    Article  CAS  PubMed  Google Scholar 

  71. Wang SW et al (2000) Cid1, a fission yeast protein required for S-M checkpoint control when DNA polymerase delta or epsilon is inactivated. Mol Cell Biol 20(9):3234–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Saitoh S et al (2002) Cid13 is a cytoplasmic poly(A) polymerase that regulates ribonucleotide reductase mRNA. Cell 109(5):563–573

    Article  CAS  PubMed  Google Scholar 

  73. Olsen A, Vantipalli MC, Lithgow GJ (2006) Checkpoint proteins control survival of the postmitotic cells in C. elegans. Science 312(5778):1381–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bensaad K, Vousden KH (2007) p53: new roles in metabolism. Trends Cell Biol 17(6):286–291

    Article  CAS  PubMed  Google Scholar 

  75. Derry WB, Putzke AP, Rothman JH (2001) C. elegans p53: role in apoptosis, meiosis, and stress resistance. Science 294(5542):591–595

    Article  CAS  PubMed  Google Scholar 

  76. Tyner SD et al (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415(6867):45–53

    Article  CAS  PubMed  Google Scholar 

  77. Arum O, Johnson TE (2007) Reduced expression of the C. elegans p53 ortholog cep-1 results in increased longevity. J Gerontol A Biol Sci Med Sci 62(9):951–959

    Article  PubMed  Google Scholar 

  78. Denver DR et al (2006) The relative roles of three DNA repair pathways in preventing C. elegans mutation accumulation. Genetics 174(1):57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. DNA repair database. Available from: https://dnapittcrew.upmc.com/db/index.php

Download references

Acknowledgments

A.U.G. is supported by NIH/NIAK99 AG049126. M.S.G. is supported by NIH/NIA R01 AG036992. L.J.N. is supported by NIH/NIAP01 AG043376. In addition, the Niedernhofer lab is supported in part by a sponsored research agreement between the Scripps Research Institute and Aldabra Biosciences LLC, of which she is a co-founder. The authors apologize to those whose work could not be cited due to lack of space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditi U. Gurkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gurkar, A.U., Gill, M.S., Niedernhofer, L.J. (2017). Genome Stability and Ageing. In: Olsen, A., Gill, M. (eds) Ageing: Lessons from C. elegans. Healthy Ageing and Longevity. Springer, Cham. https://doi.org/10.1007/978-3-319-44703-2_11

Download citation

Publish with us

Policies and ethics