Skip to main content

Oxidative Stress

  • Chapter
  • First Online:
Ageing: Lessons from C. elegans

Part of the book series: Healthy Ageing and Longevity ((HAL))

Abstract

The oxidative damage theory has been the dominant paradigm in ageing research over the last 50 years. The versatile genetic nematode model C. elegans has been used by many to put this theory to the test. C. elegans is an attractive model as it ages fast, it has an elaborate antioxidant system which can be easily manipulated, and many long-lived mutants are available. Recently, it became possible to visualize reactive oxygen species (ROS) in vivo and in real-time in this transparent animal by using genetically encoded biosensors. The data generated in C. elegans to test the oxidative damage theory is often ambiguous and of mere correlative nature. Experimental manipulation of the antioxidant system most often disproves this theory. Over the years, it became clear that ROS, when present at normal physiological levels, are important signalling molecules. Interference with this ROS signal may elicit a cytoprotective programme that, in many cases, extends lifespan. It is still an open question whether the molecular underpinnings of this hormetic response is also of importance to the normal ageing process. Alternatives to the oxidative damage theory, such as the hypertrophy hypothesis, are currently gaining wider attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Marais DJ (2000) Evolution. When did photosynthesis emerge on Earth? Science 289(5485):1703–1705

    PubMed  Google Scholar 

  2. Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  3. Muller F (2000) The nature and mechanism of superoxide production by the electron transport chain: its relevance to aging. J Am Aging Assoc 23(4):227–253. doi:10.1007/s11357-000-0022-9 22 [pii]

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    Article  CAS  PubMed  Google Scholar 

  5. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277(47):44784–44790. doi:10.1074/jbc.M207217200 M207217200 [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80(5):780–787

    Article  CAS  PubMed  Google Scholar 

  7. Brand MD (2000) Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 35(6–7):811–820, doi:S0531-5565(00)00135-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Fisher AB (2009) Redox signaling across cell membranes. Antioxid Redox Signal 11(6):1349–1356. doi:10.1089/ARS.2008.2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brodie AE, Reed DJ (1987) Reversible oxidation of glyceraldehyde 3-phosphate dehydrogenase thiols in human lung carcinoma cells by hydrogen peroxide. Biochem Biophys Res Commun 148(1):120–125, doi:0006-291X(87)91084-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Mahadev K, Zilbering A, Zhu L, Goldstein BJ (2001) Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J Biol Chem 276(24):21938–21942. doi:10.1074/jbc.C100109200 C100109200 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95. doi:10.1152/physrev.00018.2001

    Article  CAS  PubMed  Google Scholar 

  12. Czapski G (1984) Reaction of.OH. Methods Enzymol 105:209–215

    Article  CAS  PubMed  Google Scholar 

  13. Park S, Imlay JA (2003) High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. J Bacteriol 185(6):1942–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rowley DA, Halliwell B (1982) Superoxide-dependent formation of hydroxyl radicals from NADH and NADPH in the presence of iron salts. FEBS Lett 142(1):39–41. doi:0014-5793(82)80214-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Woodmansee AN, Imlay JA (2002) Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol Chem 277(37):34055–34066. doi:10.1074/jbc.M203977200 M203977200 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Gray JM, Karow DS, Lu H, Chang AJ, Chang JS, Ellis RE, Marletta MA, Bargmann CI (2004) Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430(6997):317–322. doi:10.1038/nature02714 nature02714 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19(8):1777–1783. doi:10.1093/emboj/19.8.1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    CAS  PubMed  Google Scholar 

  19. Wuerges J, Lee JW, Yim YI, Yim HS, Kang SO, Djinovic Carugo K (2004) Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc Natl Acad Sci U S A 101(23):8569–8574. doi:10.1073/pnas.0308514101 0308514101 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoogewijs D, Houthoofd K, Matthijssens F, Vandesompele J, Vanfleteren JR (2008) Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol Biol 9:9. doi:1471-2199-9-9 [pii] 10.1186/1471-2199-9-9

  21. Fujii M, Ishii N, Joguchi A, Yasuda K, Ayusawa D (1998) A novel superoxide dismutase gene encoding membrane-bound and extracellular isoforms by alternative splicing in C. elegans. DNA Res: Int J Rapid Publ Rep Genes Genomes 5(1):25–30

    Article  CAS  Google Scholar 

  22. Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P, Matscheski A, Vanfleteren JR, Gems D (2008) Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in C. elegans. Genes Dev 22(23):3236–3241. doi:10.1101/gad.504808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suthammarak W, Somerlot BH, Opheim E, Sedensky M, Morgan PG (2013) Novel interactions between mitochondrial superoxide dismutases and the electron transport chain. Aging Cell 12(6):1132–1140. doi:10.1111/acel.12144

    Article  CAS  PubMed  Google Scholar 

  24. Yanase S, Onodera A, Tedesco P, Johnson TE, Ishii N (2009) SOD-1 deletions in C. elegans alter the localization of intracellular reactive oxygen species and show molecular compensation. J Gerontol 64(5):530–539. doi:10.1093/gerona/glp020

    Article  CAS  Google Scholar 

  25. Back P, Matthijssens F, Vlaeminck C, Braeckman BP, Vanfleteren JR (2010) Effects of sod gene overexpression and deletion mutation on the expression profiles of reporter genes of major detoxification pathways in C. elegans. Exp Gerontol 45(7–8):603–610. doi:S0531-5565(10)00048-3 [pii] 10.1016/j.exger.2010.01.014

  26. Reid TJ 3rd, Murthy MR, Sicignano A, Tanaka N, Musick WD, Rossmann MG (1981) Structure and heme environment of beef liver catalase at 2.5 A resolution. Proc Natl Acad Sci U S A 78(8):4767–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barrett J, Beis I (1982) Catalase in free-living and parasitic platyhelminthes. Experientia 38(5):536

    Article  CAS  PubMed  Google Scholar 

  28. Ishikawa T, Tajima N, Nishikawa H, Gao Y, Rapolu M, Shibata H, Sawa Y, Shigeoka S (2010) Euglena gracilis ascorbate peroxidase forms an intramolecular dimeric structure: its unique molecular characterization. Biochem J 426(2):125–134. doi:BJ20091406 [pii] 10.1042/BJ20091406

  29. Petriv OI, Rachubinski RA (2004) Lack of peroxisomal catalase causes a progeric phenotype in C. elegans. J Biol Chem 279(19):19996–20001. doi:10.1074/jbc.M400207200

    Article  CAS  PubMed  Google Scholar 

  30. Togo SH, Maebuchi M, Yokota S, Bun-Ya M, Kawahara A, Kamiryo T (2000) Immunological detection of alkaline-diaminobenzidine-negative peroxisomes of the nematode C. elegans purification and unique pH optima of peroxisomal catalase. Eur J Biochem/FEBS 267(5):1307–1312

    Article  CAS  Google Scholar 

  31. Vanfleteren JR (1993) Oxidative stress and ageing in C. elegans. Biochem J 292(Pt 2):605–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benner J, Daniel H, Spanier B (2011) A glutathione peroxidase, intracellular peptidases and the TOR complexes regulate peptide transporter PEPT-1 in C. elegans. PLoS ONE 6(9):e25624. doi:10.1371/journal.pone.0025624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Olahova M, Veal EA (2015) A peroxiredoxin, PRDX-2, is required for insulin secretion and insulin/IIS-dependent regulation of stress resistance and longevity. Aging Cell 14(4):558–568. doi:10.1111/acel.12321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Olahova M, Taylor SR, Khazaipoul S, Wang J, Morgan BA, Matsumoto K, Blackwell TK, Veal EA (2008) A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance. Proc Natl Acad Sci U S A 105(50):19839–19844. doi:10.1073/pnas.0805507105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Labuschagne CF, Brenkman AB (2013) Current methods in quantifying ROS and oxidative damage in C. elegans and other model organism of aging. Ageing Res Rev 12(4):918–930. doi:S1568-1637(13)00066-4 [pii] 10.1016/j.arr.2013.09.003

  36. Bartosz G (2006) Use of spectroscopic probes for detection of reactive oxygen species. Clin Chim Acta 368(1–2):53–76. doi:10.1016/j.cca.2005.12.039

    Article  CAS  PubMed  Google Scholar 

  37. Gomes A, Fernandes E, Lima JL (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65(2–3):45–80. doi:10.1016/j.jbbm.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  38. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43(7):995–1022. doi:10.1016/j.freeradbiomed.2007.06.026

    Article  CAS  PubMed  Google Scholar 

  39. Back P, Braeckman BP, Matthijssens F (2012) ROS in aging C. elegans: damage or signaling? Oxidative Med Cell Longev 2012:608478. doi:10.1155/2012/608478

    Article  CAS  Google Scholar 

  40. Srikun D, Albers AE, Nam CI, Iavarone AT, Chang CJ (2010) Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-Tag protein labeling. J Am Chem Soc 132(12):4455–4465. doi:10.1021/ja100117u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cocheme HM, Quin C, McQuaker SJ, Cabreiro F, Logan A, Prime TA, Abakumova I, Patel JV, Fearnley IM, James AM, Porteous CM, Smith RA, Saeed S, Carre JE, Singer M, Gems D, Hartley RC, Partridge L, Murphy MP (2011) Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab 13(3):340–350. doi:10.1016/j.cmet.2011.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chattoraj M, King BA, Bublitz GU, Boxer SG (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci U S A 93(16):8362–8367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meyer AJ, Dick TP (2010) Fluorescent protein-based redox probes. Antioxid Redox Signal 13(5):621–650. doi:10.1089/ars.2009.2948

    Article  CAS  PubMed  Google Scholar 

  44. Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, Wang X, Li K, Han P, Zheng M, Yin J, Mattson MP, Kao JP, Lakatta EG, Sheu SS, Ouyang K, Chen J, Dirksen RT, Cheng H (2008) Superoxide flashes in single mitochondria. Cell 134(2):279–290. doi:S0092-8674(08)00769-1 [pii] 10.1016/j.cell.2008.06.017

  45. Huang Z, Zhang W, Fang H, Zheng M, Wang X, Xu J, Cheng H, Gong G, Wang W, Dirksen RT, Sheu SS (2011) Response to “A critical evaluation of cpYFP as a probe for superoxide”. Free Radic Biol Med 51(10):1937–1940. doi:S0891-5849(11)00537-5 [pii] 10.1016/j.freeradbiomed.2011.08.024

  46. Muller FL (2009) A critical evaluation of cpYFP as a probe for superoxide. Free Radic Biol Med 47(12):1779–1780. doi:S0891-5849(09)00545-0 [pii] 10.1016/j.freeradbiomed.2009.09.019

  47. Shen EZ, Song CQ, Lin Y, Zhang WH, Su PF, Liu WY, Zhang P, Xu J, Lin N, Zhan C, Wang X, Shyr Y, Cheng H, Dong MQ (2014) Mitoflash frequency in early adulthood predicts lifespan in C. elegans. Nature 508(7494):128–132. doi:nature13012 [pii] 10.1038/nature13012

  48. Schwarzlander M, Wagner S, Ermakova YG, Belousov VV, Radi R, Beckman JS, Buettner GR, Demaurex N, Duchen MR, Forman HJ, Fricker MD, Gems D, Halestrap AP, Halliwell B, Jakob U, Johnston IG, Jones NS, Logan DC, Morgan B, Muller FL, Nicholls DG, Remington SJ, Schumacker PT, Winterbourn CC, Sweetlove LJ, Meyer AJ, Dick TP, Murphy MP (2014) The ‘mitoflash’ probe cpYFP does not respond to superoxide. Nature 514(7523):E12–E14. doi:nature13858 [pii] 10.1038/nature13858

  49. Cheng H, Wang W, Wang X, Sheu SS, Dirksen RT, Dong MQ (2014) Cheng et al. reply. Nature 514(7523):E14–E15. doi:nature13859 [pii] 10.1038/nature13859

  50. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286. doi:nmeth866 [pii] 10.1038/nmeth866

  51. Markvicheva KN, Bilan DS, Mishina NM, Gorokhovatsky AY, Vinokurov LM, Lukyanov S, Belousov VV (2011) A genetically encoded sensor for H2O2 with expanded dynamic range. Bioorg Med Chem 19(3):1079–1084. doi:S0968-0896(10)00657-7 [pii] 10.1016/j.bmc.2010.07.014

  52. Bilan DS, Pase L, Joosen L, Gorokhovatsky AY, Ermakova YG, Gadella TW, Grabher C, Schultz C, Lukyanov S, Belousov VV (2013) HyPer-3: a genetically encoded H(2)O(2) probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chem Biol 8(3):535–542. doi:10.1021/cb300625g

    Article  CAS  PubMed  Google Scholar 

  53. Lukyanov KA, Belousov VV (2014) Genetically encoded fluorescent redox sensors. Biochim Biophys Acta 1840(2):745–756. doi:S0304-4165(13)00226-2 [pii] 10.1016/j.bbagen.2013.05.030

  54. Tantama M, Hung YP, Yellen G (2011) Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J Am Chem Soc 133(26):10034–10037. doi:10.1021/ja202902d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Malinouski M, Zhou Y, Belousov VV, Hatfield DL, Gladyshev VN (2011) Hydrogen peroxide probes directed to different cellular compartments. PLoS ONE 6(1):e14564. doi:10.1371/journal.pone.0014564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Back P, De Vos WH, Depuydt GG, Matthijssens F, Vanfleteren JR, Braeckman BP (2012) Exploring real-time in vivo redox biology of developing and aging C. elegans. Free Radic Biol Med 52(5):850–859. doi:10.1016/j.freeradbiomed.2011.11.037

    Article  CAS  PubMed  Google Scholar 

  57. Knoefler D, Thamsen M, Koniczek M, Niemuth NJ, Diederich AK, Jakob U (2012) Quantitative in vivo redox sensors uncover oxidative stress as an early event in life. Mol Cell 47(5):767–776. doi:10.1016/j.molcel.2012.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Edens WA, Sharling L, Cheng G, Shapira R, Kinkade JM, Lee T, Edens HA, Tang X, Sullards C, Flaherty DB, Benian GM, Lambeth JD (2001) Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 154(4):879–891. doi:10.1083/jcb.200103132 154/4/879 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gutscher M, Sobotta MC, Wabnitz GH, Ballikaya S, Meyer AJ, Samstag Y, Dick TP (2009) Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem 284(46):31532–31540. doi:M109.059246 [pii] 10.1074/jbc.M109.059246

  60. Schwarzlander M, Fricker MD, Muller C, Marty L, Brach T, Novak J, Sweetlove LJ, Hell R, Meyer AJ (2008) Confocal imaging of glutathione redox potential in living plant cells. J Microsc 231(2):299–316. doi:JMI2030 [pii] 10.1111/j.1365-2818.2008.02030.x

  61. Castelein N, Muschol M, Dhondt I, Cai H, De Vos WH, Dencher NA, Braeckman BP (2014) Mitochondrial efficiency is increased in axenically cultured C. elegans. Exp Gerontol 56:26–36. doi:S0531-5565(14)00057-6 [pii] 10.1016/j.exger.2014.02.009

  62. Enyedi B, Zana M, Donko A, Geiszt M (2013) Spatial and temporal analysis of NADPH oxidase-generated hydrogen peroxide signals by novel fluorescent reporter proteins. Antioxid Redox Signal 19(6):523–534. doi:10.1089/ars.2012.4594

    Article  CAS  PubMed  Google Scholar 

  63. Ostergaard H, Henriksen A, Hansen FG, Winther JR (2001) Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein. EMBO J 20(21):5853–5862. doi:10.1093/emboj/20.21.5853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gutscher M, Pauleau AL, Marty L, Brach T, Wabnitz GH, Samstag Y, Meyer AJ, Dick TP (2008) Real-time imaging of the intracellular glutathione redox potential. Nat Methods 5(6):553–559. doi:nmeth.1212 [pii] 10.1038/nmeth.1212

  65. Hung YP, Albeck JG, Tantama M, Yellen G (2011) Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab 14(4):545–554. doi:S1550-4131(11)00342-1 [pii] 10.1016/j.cmet.2011.08.012

  66. Zhao Y, Jin J, Hu Q, Zhou HM, Yi J, Yu Z, Xu L, Wang X, Yang Y, Loscalzo J (2011) Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab 14(4):555–566. doi:S1550-4131(11)00350-0 [pii] 10.1016/j.cmet.2011.09.004

  67. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  CAS  PubMed  Google Scholar 

  68. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20(4):145–147

    Article  CAS  PubMed  Google Scholar 

  69. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273(5271):59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sohal RS (2002) Role of oxidative stress and protein oxidation in the aging process. Free Radic Biol Med 33(1):37–44, doi:S0891584902008560 [pii]

    Article  CAS  PubMed  Google Scholar 

  71. Johnson TE (2003) Advantages and disadvantages of C. elegans for aging research. Exp Gerontol 38(11–12):1329–1332, doi:S0531556503002870 [pii]

    Article  CAS  PubMed  Google Scholar 

  72. Johnson TE (2013) 25 years after age-1: genes, interventions and the revolution in aging research. Exp Gerontol 48(7):640–643. doi:S0531-5565(13)00063-6 [pii] 10.1016/j.exger.2013.02.023

  73. Tissenbaum HA (2015) Using for aging research. Invertebr Reprod Dev 59(sup1):59–63. doi:10.1080/07924259.2014.940470 940470 [pii]

    Article  PubMed  Google Scholar 

  74. Adachi H, Fujiwara Y, Ishii N (1998) Effects of oxygen on protein carbonyl and aging in C. elegans mutants with long (age-1) and short (mev-1) life spans. J Gerontol A Biol Sci Med Sci 53(4):B240–B244

    Article  CAS  PubMed  Google Scholar 

  75. Yasuda K, Adachi H, Fujiwara Y, Ishii N (1999) Protein carbonyl accumulation in aging dauer formation-defective (daf) mutants of C. elegans. J Gerontol A Biol Sci Med Sci 54(2):B47–B51, discussion B52-43

    Article  CAS  PubMed  Google Scholar 

  76. Matthijssens F, Braeckman BP, Vanfleteren JR (2007) Evaluation of different methods for assaying protein carbonylation. Curr Anal Chem 3(2):93–102. doi:10.2174/157341107780361727

    Article  CAS  Google Scholar 

  77. Yasuda K, Ishii T, Suda H, Akatsuka A, Hartman PS, Goto S, Miyazawa M, Ishii N (2006) Age-related changes of mitochondrial structure and function in C. elegans. Mech Ageing Dev 127(10):763–770. doi:S0047-6374(06)00166-7 [pii] 10.1016/j.mad.2006.07.002

  78. Klass M, Nguyen PN, Dechavigny A (1983) Age-correlated changes in the DNA template in the nematode C. elegans. Mech Ageing Dev 22(3–4):253–263

    Article  CAS  PubMed  Google Scholar 

  79. Simpson VJ, Johnson TE, Hammen RF (1986) C. elegans DNA does not contain 5-methylcytosine at any time during development or aging. Nucleic Acids Res 14(16):6711–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Brys K, Castelein N, Matthijssens F, Vanfleteren JR, Braeckman BP (2010) Disruption of insulin signalling preserves bioenergetic competence of mitochondria in ageing C. elegans. BMC Biol 8:91. doi:1741-7007-8-91 [pii] 10.1186/1741-7007-8-91

  81. Gruber J, Ng LF, Fong S, Wong YT, Koh SA, Chen CB, Shui G, Cheong WF, Schaffer S, Wenk MR, Halliwell B (2011) Mitochondrial changes in ageing C. elegans – what do we learn from superoxide dismutase knockouts? PLoS ONE 6(5):e19444. doi:10.1371/journal.pone.0019444 PONE-D-11-04291 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Melov S, Lithgow GJ, Fischer DR, Tedesco PM, Johnson TE (1995) Increased frequency of deletions in the mitochondrial genome with age of C. elegans. Nucleic Acids Res 23(8):1419–1425, doi:4a0746 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ayyadevara S, Dandapat A, Singh SP, Siegel ER, Shmookler Reis RJ, Zimniak L, Zimniak P (2007) Life span and stress resistance of C. elegans are differentially affected by glutathione transferases metabolizing 4-hydroxynon-2-enal. Mech Ageing Dev 128(2):196–205. doi:10.1016/j.mad.2006.11.025

    Article  CAS  PubMed  Google Scholar 

  84. Tonna EA (1975) Accumulation of lipofuscin (age pigment) in aging skeletal connective tissues as revealed by electron microscopy. J Gerontol 30(1):3–8

    Article  CAS  PubMed  Google Scholar 

  85. Davis BO Jr, Anderson GL, Dusenbery DB (1982) Total luminescence spectroscopy of fluorescence changes during aging in C. elegans. Biochemistry 21(17):4089–4095

    Article  CAS  PubMed  Google Scholar 

  86. Gerstbrein B, Stamatas G, Kollias N, Driscoll M (2005) In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in C. elegans. Aging Cell 4(3):127–137

    Article  CAS  PubMed  Google Scholar 

  87. Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002) Ageing is reversed, and metabolism is reset to young levels in recovering dauer larvae of C. elegans. Exp Gerontol 37(8–9):1015–1021, doi:S0531556502000633 [pii]

    Article  CAS  PubMed  Google Scholar 

  88. Coburn C, Allman E, Mahanti P, Benedetto A, Cabreiro F, Pincus Z, Matthijssens F, Araiz C, Mandel A, Vlachos M, Edwards SA, Fischer G, Davidson A, Pryor RE, Stevens A, Slack FJ, Tavernarakis N, Braeckman BP, Schroeder FC, Nehrke K, Gems D (2013) Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in C. elegans. PLoS Biol 11(7):e1001613. doi:10.1371/journal.pbio.1001613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Larsen PL (1993) Aging and resistance to oxidative damage in C. elegans. Proc Natl Acad Sci U S A 90(19):8905–8909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in C. elegans. FASEB J 13(11):1385–1393

    CAS  PubMed  Google Scholar 

  91. Houthoofd K, Fidalgo MA, Hoogewijs D, Braeckman BP, Lenaerts I, Brys K, Matthijssens F, De Vreese A, Van Eygen S, Munoz MJ, Vanfleteren JR (2005) Metabolism, physiology and stress defense in three aging Ins/IGF-1 mutants of the nematode C. elegans. Aging Cell 4(2):87–95. doi:ACE150 [pii] 10.1111/j.1474-9726.2005.00150.x

  92. Johnson TE, de Castro E, Hegi de Castro S, Cypser J, Henderson S, Tedesco P (2001) Relationship between increased longevity and stress resistance as assessed through gerontogene mutations in C. elegans. Exp Gerontol 36(10):1609–1617, doi:S0531556501001449 [pii]

    Article  CAS  PubMed  Google Scholar 

  93. Stuart JA, Brown MF (2006) Energy, quiescence and the cellular basis of animal life spans. Comp Biochem Physiol A Mol Integr Physiol 143(1):12–23. doi:S1095-6433(05)00370-3 [pii] 10.1016/j.cbpa.2005.11.002

  94. Lithgow GJ, Walker GA (2002) Stress resistance as a determinate of C. elegans lifespan. Mech Ageing Dev 123(7):765–771, doi:S0047637401004225 [pii]

    Article  PubMed  Google Scholar 

  95. de Castro E, Hegi de Castro S, Johnson TE (2004) Isolation of long-lived mutants in C. elegans using selection for resistance to juglone. Free Radic Biol Med 37(2):139–145. doi:10.1016/j.freeradbiomed.2004.04.021

    Article  PubMed  CAS  Google Scholar 

  96. Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N, Yanase S, Ayusawa D, Suzuki K (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394(6694):694–697

    Article  CAS  PubMed  Google Scholar 

  97. Gems D, Doonan R (2009) Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong? Cell Cycle 8(11):1681–1687, doi:8595 [pii]

    Article  CAS  PubMed  Google Scholar 

  98. Garsin DA, Villanueva JM, Begun J, Kim DH, Sifri CD, Calderwood SB, Ruvkun G, Ausubel FM (2003) Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300(5627):1921

    Article  CAS  PubMed  Google Scholar 

  99. Yang W, Li J, Hekimi S (2007) A Measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of C. elegans. Genetics 177(4):2063–2074. doi:177/4/2063 [pii] 10.1534/genetics.107.080788

  100. Honda Y, Tanaka M, Honda S (2008) Modulation of longevity and diapause by redox regulation mechanisms under the insulin-like signaling control in C. elegans. Exp Gerontol 43(6):520–529. doi:10.1016/j.exger.2008.02.009

    Article  CAS  PubMed  Google Scholar 

  101. Van Raamsdonk JM, Hekimi S (2010) Reactive oxygen species and aging in C. elegans: causal or casual relationship? Antioxid Redox Signal 13(12):1911–1953. doi:10.1089/ars.2010.3215

    Article  PubMed  Google Scholar 

  102. Cabreiro F, Ackerman D, Doonan R, Araiz C, Back P, Papp D, Braeckman BP, Gems D (2011) Increased life span from overexpression of superoxide dismutase in C. elegans is not caused by decreased oxidative damage. Free Radic Biol Med 51(8):1575–1582. doi:10.1016/j.freeradbiomed.2011.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Van Raamsdonk JM, Hekimi S (2009) Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in C. elegans. PLoS Genet 5(2):e1000361. doi:10.1371/journal.pgen.1000361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Yen K, Patel HB, Lublin AL, Mobbs CV (2009) SOD isoforms play no role in lifespan in ad lib or dietary restricted conditions, but mutational inactivation of SOD-1 reduces life extension by cold. Mech Ageing Dev 130(3):173–178. doi:S0047-6374(08)00207-8 [pii] 10.1016/j.mad.2008.11.003

  105. Van Raamsdonk JM, Hekimi S (2012) Superoxide dismutase is dispensable for normal animal lifespan. Proc Natl Acad Sci U S A 109(15):5785–5790. doi:1116158109 [pii] 10.1073/pnas.1116158109

  106. Ranjan M, Gruber J, Ng LF, Halliwell B (2013) Repression of the mitochondrial peroxiredoxin antioxidant system does not shorten life span but causes reduced fitness in C. elegans. Free Radic Biol Med 63:381–389. doi:S0891-5849(13)00235-9 [pii] 10.1016/j.freeradbiomed.2013.05.025

  107. Jee C, Vanoaica L, Lee J, Park BJ, Ahnn J (2005) Thioredoxin is related to life span regulation and oxidative stress response in C. elegans. Genes Cells 10(12):1203–1210. doi:GTC913 [pii] 10.1111/j.1365-2443.2005.00913.x

  108. Miranda-Vizuete A, Fierro Gonzalez JC, Gahmon G, Burghoorn J, Navas P, Swoboda P (2006) Lifespan decrease in a C. elegans mutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons. FEBS Lett 580(2):484–490. doi:10.1016/j.febslet.2005.12.046

    Article  CAS  PubMed  Google Scholar 

  109. Collins JJ, Evason K, Kornfeld K (2006) Pharmacology of delayed aging and extended lifespan of C. elegans. Exp Gerontol 41(10):1032–1039. doi:S0531-5565(06)00221-X [pii] 10.1016/j.exger.2006.06.038

  110. Adachi H, Ishii N (2000) Effects of tocotrienols on life span and protein carbonylation in C. elegans. J Gerontol 55(6):B280–B285

    Article  CAS  Google Scholar 

  111. Benedetti MG, Foster AL, Vantipalli MC, White MP, Sampayo JN, Gill MS, Olsen A, Lithgow GJ (2008) Compounds that confer thermal stress resistance and extended lifespan. Exp Gerontol 43(10):882–891. doi:10.1016/j.exger.2008.08.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brown MK, Evans JL, Luo Y (2006) Beneficial effects of natural antioxidants EGCG and alpha-lipoic acid on life span and age-dependent behavioral declines in C. elegans. Pharmacol Biochem Behav 85(3):620–628. doi:S0091-3057(06)00352-2 [pii]. 10.1016/j.pbb.2006.10.017

  113. Harrington LA, Harley CB (1988) Effect of vitamin E on lifespan and reproduction in C. elegans. Mech Ageing Dev 43(1):71–78, doi:0047-6374(88)90098-X [pii]

    Article  CAS  PubMed  Google Scholar 

  114. Ishii N, Senoo-Matsuda N, Miyake K, Yasuda K, Ishii T, Hartman PS, Furukawa S (2004) Coenzyme Q10 can prolong C. elegans lifespan by lowering oxidative stress. Mech Ageing Dev 125(1):41–46, doi:S0047637403001982 [pii]

    Article  CAS  PubMed  Google Scholar 

  115. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends C. elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6(4):280–293

    Article  CAS  PubMed  Google Scholar 

  116. Zarse K, Schmeisser S, Groth M, Priebe S, Beuster G, Kuhlow D, Guthke R, Platzer M, Kahn CR, Ristow M (2012) Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab 15(4):451–465. doi:10.1016/j.cmet.2012.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pun PB, Gruber J, Tang SY, Schaffer S, Ong RL, Fong S, Ng LF, Cheah I, Halliwell B (2010) Ageing in nematodes: do antioxidants extend lifespan in C. elegans? Biogerontology 11(1):17–30. doi:10.1007/s10522-009-9223-5

    Article  PubMed  Google Scholar 

  118. Keaney M, Matthijssens F, Sharpe M, Vanfleteren J, Gems D (2004) Superoxide dismutase mimetics elevate superoxide dismutase activity in vivo but do not retard aging in the nematode C. elegans. Free Radic Biol Med 37(2):239–250. doi:10.1016/j.freeradbiomed.2004.04.005 S0891584904003089 [pii]

    Article  CAS  PubMed  Google Scholar 

  119. Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC, Malfroy B, Doctrow SR, Lithgow GJ (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289(5484):1567–1569

    Article  CAS  PubMed  Google Scholar 

  120. Keaney M, Gems D (2003) No increase in lifespan in C. elegans upon treatment with the superoxide dismutase mimetic EUK-8. Free Radic Biol Med 34(2):277–282, doi:S089158490201290X [pii]

    Article  CAS  PubMed  Google Scholar 

  121. Kim J, Takahashi M, Shimizu T, Shirasawa T, Kajita M, Kanayama A, Miyamoto Y (2008) Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of C. elegans. Mech Ageing Dev 129(6):322–331. doi:S0047-6374(08)00050-X [pii] 10.1016/j.mad.2008.02.011

  122. Sampayo JN, Olsen A, Lithgow GJ (2003) Oxidative stress in C. elegans: protective effects of superoxide dismutase/catalase mimetics. Aging Cell 2(6):319–326

    Article  CAS  PubMed  Google Scholar 

  123. Heidler T, Hartwig K, Daniel H, Wenzel U (2010) C. elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology 11(2):183–195. doi:10.1007/s10522-009-9239-x

    Article  CAS  PubMed  Google Scholar 

  124. Lee SJ, Hwang AB, Kenyon C (2010) Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol 20(23):2131–2136. doi:S0960-9822(10)01374-6 [pii] 10.1016/j.cub.2010.10.057

  125. Yang W, Hekimi S (2010) A mitochondrial superoxide signal triggers increased longevity in C. elegans. PLoS Biol 8(12):e1000556. doi:10.1371/journal.pbio.1000556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. An JH, Blackwell TK (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17(15):1882–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389(6654):994–999

    Article  CAS  PubMed  Google Scholar 

  128. Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132(6):1025–1038. doi:10.1016/j.cell.2008.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Park SK, Tedesco PM, Johnson TE (2009) Oxidative stress and longevity in C. elegans as mediated by SKN-1. Aging Cell 8(3):258–269. doi:ACE473 [pii] 10.1111/j.1474-9726.2009.00473.x

  130. Buchter C, Ackermann D, Honnen S, Arnold N, Havermann S, Koch K, Watjen W (2015) Methylated derivatives of myricetin enhance life span in C. elegans dependent on the transcription factor DAF-16. Food Funct. doi:10.1039/c5fo00463b

    PubMed  Google Scholar 

  131. Pant A, Asthana J, Yadav AK, Rathor L, Srivastava S, Gupta MM, Pandey R (2015) Verminoside mediates life span extension and alleviates stress in C. elegans. Free Radic Res:1–9. doi:10.3109/10715762.2015.1075017.

  132. Seo HW, Cheon SM, Lee MH, Kim HJ, Jeon H, Cha DS (2015) Catalpol modulates lifespan via DAF-16/FOXO and SKN-1/Nrf2 activation in C. elegans. Evid Based Complement Alternat Med 2015:524878. doi:10.1155/2015/524878

    Article  PubMed  PubMed Central  Google Scholar 

  133. Su S, Wink M (2015) Natural lignans from Arctium lappa as antiaging agents in C. elegans. Phytochemistry 117:340–350. doi:S0031-9422(15)30033-9 [pii] 10.1016/j.phytochem.2015.06.021

  134. Zhang Y, Lv T, Li M, Xue T, Liu H, Zhang W, Ding X, Zhuang Z (2015) Anti-aging effect of polysaccharide from Bletilla striata on nematode C. elegans. Pharmacogn Mag 11(43):449–454. doi:10.4103/0973-1296.160447 PM-11-449 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Oh SI, Park JK, Park SK (2015) Lifespan extension and increased resistance to environmental stressors by N-acetyl-L-cysteine in C. elegans. Clinics (Sao Paulo) 70(5):380–386. doi:S1807-59322015000500380 [pii] 10.6061/clinics/2015(05)13

  136. Cascella R, Evangelisti E, Zampagni M, Becatti M, D'Adamio G, Goti A, Liguri G, Fiorillo C, Cecchi C (2014) S-linolenoyl glutathione intake extends life-span and stress resistance via Sir-2.1 upregulation in C. elegans. Free Radic Biol Med 73:127–135. doi:S0891-5849(14)00220-2 [pii] 10.1016/j.freeradbiomed.2014.05.004

  137. Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, Wolkow CA (2006) Blueberry polyphenols increase lifespan and thermotolerance in C. elegans. Aging Cell 5(1):59–68. doi:ACE192 [pii] 10.1111/j.1474-9726.2006.00192.x

  138. Rea SL, Ventura N, Johnson TE (2007) Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in C. elegans. PLoS Biol 5(10):e259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Feng J, Bussiere F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in C. elegans. Dev Cell 1(5):633–644, doi:S1534-5807(01)00071-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  140. Schaar CE, Dues DJ, Spielbauer KK, Machiela E, Cooper JF, Senchuk M, Hekimi S, Van Raamsdonk JM (2015) Mitochondrial and cytoplasmic ROS have opposing effects on lifespan. PLoS Genet 11(2):e1004972. doi:10.1371/journal.pgen.1004972 PGENETICS-D-14-02541 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45(6):410–418. doi:S0531-5565(10)00128-2 [pii] 10.1016/j.exger.2010.03.014

  142. Tapia PC (2006) Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: “Mitohormesis” for health and vitality. Med Hypotheses 66(4):832–843. doi:S0306-9877(05)00467-6 [pii] 10.1016/j.mehy.2005.09.009

  143. Munkacsy E, Rea SL (2014) The paradox of mitochondrial dysfunction and extended longevity. Exp Gerontol 56:221–233. doi:S0531-5565(14)00088-6 [pii] 10.1016/j.exger.2014.03.016

  144. Ristow M, Schmeisser S (2011) Extending life span by increasing oxidative stress. Free Radic Biol Med 51(2):327–336. doi:S0891-5849(11)00312-1 [pii] 10.1016/j.freeradbiomed.2011.05.010

  145. Yang W, Hekimi S (2010) Two modes of mitochondrial dysfunction lead independently to lifespan extension in C. elegans. Aging Cell 9(3):433–447. doi:10.1111/j.1474-9726.2010.00571.x

    Article  CAS  PubMed  Google Scholar 

  146. Durieux J, Wolff S, Dillin A (2011) The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144(1):79–91. doi:10.1016/j.cell.2010.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ventura N, Rea SL, Schiavi A, Torgovnick A, Testi R, Johnson TE (2009) p53/CEP-1 increases or decreases lifespan, depending on level of mitochondrial bioenergetic stress. Aging Cell 8(4):380–393. doi:10.1111/j.1474-9726.2009.00482.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bennett CF, Kaeberlein M (2014) The mitochondrial unfolded protein response and increased longevity: cause, consequence, or correlation? Exp Gerontol 56:142–146. doi:S0531-5565(14)00050-3 [pii] 10.1016/j.exger.2014.02.002

  149. Dancy BM, Sedensky MM, Morgan PG (2014) Effects of the mitochondrial respiratory chain on longevity in C. elegans. Exp Gerontol 56:245–255. doi:S0531-5565(14)00119-3 [pii] 10.1016/j.exger.2014.03.028

  150. Shore DE, Ruvkun G (2013) A cytoprotective perspective on longevity regulation. Trends Cell Biol 23(9):409–420. doi:10.1016/j.tcb.2013.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Cypser JR, Johnson TE (2002) Multiple stressors in C. elegans induce stress hormesis and extended longevity. J Gerontol A Biol Sci Med Sci 57(3):B109–B114

    Article  PubMed  Google Scholar 

  152. Johnson TE, Henderson S, Murakami S, de Castro E, de Castro SH, Cypser J, Rikke B, Tedesco P, Link C (2002) Longevity genes in the nematode C. elegans also mediate increased resistance to stress and prevent disease. J Inherit Metab Dis 25(3):197–206

    Article  CAS  PubMed  Google Scholar 

  153. Darr D, Fridovich I (1995) Adaptation to oxidative stress in young, but not in mature or old, C. elegans. Free Radic Biol Med 18(2):195–201, doi:0891584994001184 [pii]

    Article  CAS  PubMed  Google Scholar 

  154. Hekimi S, Lapointe J, Wen Y (2011) Taking a “good” look at free radicals in the aging process. Trends Cell Biol 21(10):569–576. doi:S0962-8924(11)00134-6 [pii] 10.1016/j.tcb.2011.06.008

  155. Honda Y, Honda S (2002) Life span extensions associated with upregulation of gene expression of antioxidant enzymes in C. elegans; studies of mutation in the age-1, PI3 kinase homologue and short-term exposure to hyperoxia. J Am Aging Assoc 25(1):21–28. doi:10.1007/s11357-002-0003-2 3 [pii]

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Valentini S, Cabreiro F, Ackerman D, Alam MM, Kunze MB, Kay CW, Gems D (2013) Manipulation of in vivo iron levels can alter resistance to oxidative stress without affecting ageing in the nematode C. elegans. Mech Ageing Dev 133(5):282–290. doi:S0047-6374(12)00038-3 [pii] 10.1016/j.mad.2012.03.003

  157. Droge W (2003) Oxidative stress and aging. Adv Exp Med Biol 543:191–200

    Article  CAS  PubMed  Google Scholar 

  158. De Haes W, Frooninckx L, Van Assche R, Smolders A, Depuydt G, Billen J, Braeckman BP, Schoofs L, Temmerman L (2014) Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci U S A 111(24):E2501–2509. doi:1321776111 [pii] 10.1073/pnas.1321776111

  159. Putker M, Madl T, Vos HR, de Ruiter H, Visscher M, van den Berg MC, Kaplan M, Korswagen HC, Boelens R, Vermeulen M, Burgering BM, Dansen TB (2013) Redox-dependent control of FOXO/DAF-16 by transportin-1. Mol Cell 49(4):730–742. doi:S1097-2765(12)01050-7 [pii] 10.1016/j.molcel.2012.12.014

  160. De Henau S, Tilleman L, Vangheel M, Evi Luyckx E, Trashin S, Pauwels M, Germani F, Vlaeminck C, Vanfleteren JR, Bert W, Pesce A, Nardini M, Bolognesi M, De Wael K, Moens L, Dewilde S, Braeckman BP (2015) A redox signalling globin is essential for reproduction in C. elegans. Nature Commun 6:8782

    Article  CAS  Google Scholar 

  161. Mishina NM, Tyurin-Kuzmin PA, Markvicheva KN, Vorotnikov AV, Tkachuk VA, Laketa V, Schultz C, Lukyanov S, Belousov VV (2011) Does cellular hydrogen peroxide diffuse or act locally? Antioxid Redox Signal 14(1):1–7. doi:10.1089/ars.2010.3539

    Article  CAS  PubMed  Google Scholar 

  162. Romero-Aristizabal C, Marks DS, Fontana W, Apfeld J (2014) Regulated spatial organization and sensitivity of cytosolic protein oxidation in C. elegans. Nat Commun 5:5020. doi:ncomms6020 [pii] 10.1038/ncomms6020

  163. Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52(3):539–555. doi:S0891-5849(11)01109-9 [pii] 10.1016/j.freeradbiomed.2011.10.445

  164. Fu X, Tang Y, Dickinson BC, Chang CJ, Chang Z (2015) An oxidative fluctuation hypothesis of aging generated by imaging H(2)O(2) levels in live C. elegans with altered lifespans. Biochem Biophys Res Commun 458(4):896–900. doi:S0006-291X(15)00283-1 [pii] 10.1016/j.bbrc.2015.02.055

  165. Blagosklonny MV (2006) Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle 5(18):2087–2102, doi:3288 [pii]

    Article  CAS  PubMed  Google Scholar 

  166. Klass MR (1977) Aging in the nematode C. elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6(6):413–429

    Article  CAS  PubMed  Google Scholar 

  167. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426(6967):620. doi:10.1038/426620a 426620a [pii]

    Article  CAS  PubMed  Google Scholar 

  168. Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, Sabatini DM, Blackwell TK (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15(5):713–724. doi:S1550-4131(12)00147-7 [pii] 10.1016/j.cmet.2012.04.007

  169. Gems D, de la Guardia Y (2013) Alternative perspectives on aging in C. elegans: reactive oxygen species or hyperfunction? Antioxid Redox Signal 19(3):321–329. doi:10.1089/ars.2012.4840

    Article  CAS  PubMed  Google Scholar 

  170. Lezzerini M, Smith RL, Budovskaya Y (2013) Developmental drift as a mechanism for aging: lessons from nematodes. Biogerontology 14(6):693–701. doi:10.1007/s10522-013-9462-3

    Article  CAS  PubMed  Google Scholar 

  171. Prasad KN, Bondy SC (2013) Evaluation of role of oxidative stress on aging in C. elegans: a brief review. Curr Aging Sci 6(3):215–219, doi:53119 [pii]

    Article  CAS  PubMed  Google Scholar 

  172. Liochev SI (2013) Free radical paradoxes. Free Radic Biol Med 65:232–233. doi:S0891-5849(13)00308-0 [pii] 10.1016/j.freeradbiomed.2013.06.027

  173. Barja G (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 19(12):1420–1445. doi:10.1089/ars.2012.5148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Shi Y, Buffenstein R, Pulliam DA, Van Remmen H (2010) Comparative studies of oxidative stress and mitochondrial function in aging. Integr Comp Biol 50(5):869–879. doi:icq079 [pii] 10.1093/icb/icq079

  175. Rodriguez M, Snoek LB, De Bono M, Kammenga JE (2013) Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends Genet 29(6):367–374. doi:S0168-9525(13)00022-X [pii]

    Google Scholar 

  176. Lapierre LR, Hansen M (2012) Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol Metab: TEM 23(12):637–644. doi:10.1016/j.tem.2012.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Cristina D, Cary M, Lunceford A, Clarke C, Kenyon C (2009) A regulated response to impaired respiration slows behavioral rates and increases lifespan in C. elegans. PLoS Genet 5(4):e1000450. doi:10.1371/journal.pgen.1000450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Gallo M, Park D, Riddle DL (2011) Increased longevity of some C. elegans mitochondrial mutants explained by activation of an alternative energy-producing pathway. Mech Ageing Dev 132(10):515–518. doi:S0047-6374(11)00123-0 [pii] 10.1016/j.mad.2011.08.004

  179. Danchin EG, Gouret P, Pontarotti P (2006) Eleven ancestral gene families lost in mammals and vertebrates while otherwise universally conserved in animals. BMC Evol Biol 6:5. doi:1471-2148-6-5 [pii] 10.1186/1471-2148-6-5

  180. Honda Y, Tanaka M, Honda S (2010) Trehalose extends longevity in the nematode C. elegans. Aging Cell 9 (4):558–569. doi:ACE582 [pii] 10.1111/j.1474-9726.2010.00582.x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart P. Braeckman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Braeckman, B.P., Back, P., Matthijssens, F. (2017). Oxidative Stress. In: Olsen, A., Gill, M. (eds) Ageing: Lessons from C. elegans. Healthy Ageing and Longevity. Springer, Cham. https://doi.org/10.1007/978-3-319-44703-2_10

Download citation

Publish with us

Policies and ethics