Skip to main content

The Lattice Boltzmann Equation

  • Chapter
  • First Online:
Book cover The Lattice Boltzmann Method

Abstract

After reading this chapter, you will know the basics of the lattice Boltzmann method, how it can be used to simulate fluids, and how to implement it in code. You will have insight into the derivation of the lattice Boltzmann equation, having seen how the continuous Boltzmann equation is discretised in velocity space through Hermite series expansion, before being discretised in physical space and time through the method of characteristics. In particular, you will be familiar with the various simple sets of velocity vectors that are available, and how the discrete BGK collision model is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since the Boltzmann equation is more general, it also has solutions that do not correspond to Navier-Stokes solutions. The connections between these two equations will be further explored in Sect. 4.1

  2. 2.

    There is a limit to how small a velocity set can be, though, as it has to obey the requirements shown in (3.60) to be suitable for Navier-Stokes simulations. The smallest velocity set in 3D is D3Q13, but it has the disadvantage of being tricky to apply.

  3. 3.

    This statement is not proven in this chapter, but rather in Sect. 12.1 on sound waves.

  4. 4.

    Usually, the velocity sets \(\{{\boldsymbol c}_{i}\}\) are chosen such that any spatial vector \({\boldsymbol c}_{i}\varDelta t\) points from one lattice site to a neighbouring lattice site. This guarantees that the populations f i always reach another lattice site during a time step Δ t, rather than being trapped between them.

  5. 5.

    Other collision operators are available which use additional relaxation times to achieve increased accuracy and stability (cf. Chap. 10).

  6. 6.

    As a consequence of this, mass and momentum are conserved in collisions. This conservation can be expressed mathematically as i Ω i  = 0 and \(\sum _{i}{\boldsymbol c}_{i}\varOmega _{i} ={\boldsymbol 0}\).

  7. 7.

    For those who want ready-to-program expressions, the unrolled equilibrium functions for D1Q3 and D2Q9 are shown in (3.64) and (3.65).

  8. 8.

    For example, for a moderate simulation domain of 100 × 100 × 100 lattice sites and the D3Q19 velocity set, one copy of the populations f i requires about 145 MiB of memory, where we assume double precision (8 bytes per variable).

  9. 9.

    As we will see later in Chap. 10, the collision operator can have different forms all of which locally conserve the moments (mass, momentum and energy) and, thus, yield the correct macroscopic behaviour.

  10. 10.

    This is the case for sufficiently smooth functions.

  11. 11.

    The goal of this book is to give practical aspects of the derivation and usage of the LBM rather than a rigorous mathematical theory for some assumptions used. However, for interested readers we recommend [7] for a rigorous proof.

  12. 12.

    In the isothermal case, only density and momentum are considered.

  13. 13.

    Another example of the higher versatility of the D3Q27 velocity set is its ability to reproduce the Navier-Stokes dynamics with higher-order Galilean invariance, through an off-lattice implementation [21].

  14. 14.

    This is not a hard-and-fast rule, though; it is possible to work with cases where \({\boldsymbol x} +{\boldsymbol c}_{i}\varDelta t\) falls between lattice sites [3, 21].

  15. 15.

    We have described the general principles of such finite volume methods in Sect. 2.1.2.

  16. 16.

    Applying the trapezoidal rule when integrating along characteristics is not in general the best approach. As a simple example, applying the trapezoidal rule to the equation df∕dζ = −f 3 gives us f(ζ 0 +Δ ζ) − f(ζ 0) = −[f(ζ 0)3 + f(ζ 0 +Δ ζ)3]Δ t∕2, which would have to be solved implicitly, instead of the exact explicit result \(f(\zeta _{0}+\varDelta \zeta ) = 1/\sqrt{2\varDelta t + 1/f(\zeta _{0 } )^{2}}\). A more general second-order LB discretisation is shown in Appendix A.5, though in this case the end result is the same as here.

  17. 17.

    Note that is more convenient for code implementation to write (3.83) in the form

    $$\displaystyle{ f_{i}^{\star }({\boldsymbol x},t) = \left (1 -\frac{\varDelta t} {\tau } \right )f_{i}({\boldsymbol x},t) + \frac{\varDelta t} {\tau } f_{i}^{\mathrm{eq}}({\boldsymbol x},t). }$$

    The specific choice τ = Δ t (which is quite common in LB simulations) leads to the extremely efficient collision rule

    $$\displaystyle{ f_{i}^{\star }({\boldsymbol x},t) = f_{ i}^{\mathrm{eq}}({\boldsymbol x},t), }$$

    i.e. the populations directly go to their equilibrium and forget about their previous state. We provide more details about efficient implementations of (3.83) in Chap. 13

References

  1. D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer, New York, 2005)

    MATH  Google Scholar 

  2. X. He, L.S. Luo, Phys. Rev. E 56 (6), 6811 (1997)

    Article  ADS  Google Scholar 

  3. X. Shan, X.F. Yuan, H. Chen, J. Fluid Mech. 550, 413 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. K. Dullemond, K. Peeters, Introduction to Tensor Calculus. http://www.ita.uni-heidelberg.de/~dullemond/lectures/tensor/tensor.pdf (1991–2010)

  5. J. Simmonds, A Brief on Tensor Analysis (Springer, New York, 1994)

    Book  MATH  Google Scholar 

  6. H. Grad, Commun. Pure Appl. Math. 2 (4), 325 (1949)

    Article  MathSciNet  Google Scholar 

  7. N. Wiener, The Fourier Integral and Certain of Its Applications (Cambridge University Press, Cambridge, 1933)

    MATH  Google Scholar 

  8. D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S. Luo, Phil. Trans. R. Soc. Lond. A 360, 437 (2002)

    Article  ADS  Google Scholar 

  9. A. Kuzmin, A. Mohamad, S. Succi, Int. J. Mod. Phys. C 19 (6), 875 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)

    MathSciNet  Google Scholar 

  11. P. Dellar, Phys. Rev. E 64 (3) (2001)

    Google Scholar 

  12. Z. Guo, C. Zheng, B. Shi, T. Zhao, Phys. Rev. E 75 (036704), 1 (2007)

    Google Scholar 

  13. G. Uhlenbeck, G. Ford, Lectures in Statistical Mechanics. Lectures in applied mathematics (American Mathematical Society, Providence, 1974)

    Google Scholar 

  14. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases, 2nd edn. (Cambridge University Press, Cambridge, 1952)

    MATH  Google Scholar 

  15. Y.H. Qian, D. d’Humières, P. Lallemand, Europhys. Lett. 17 (6), 479 (1992)

    Article  ADS  Google Scholar 

  16. U. Frisch, B. Hasslacher, Y. Pomeau, Phys. Rev. Lett. 56 (14), 1505 (1986)

    Article  ADS  Google Scholar 

  17. J. Latt, Hydrodynamic limit of lattice Boltzmann equations. Ph.D. thesis, University of Geneva (2007)

    Google Scholar 

  18. G. Silva, V. Semiao, J. Comput. Phys. 269, 259 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. E.M. Viggen, The lattice Boltzmann method: Fundamentals and acoustics. Ph.D. thesis, Norwegian University of Science and Technology (NTNU), Trondheim (2014)

    Google Scholar 

  20. I. Ginzburg, D. d’Humières, A. Kuzmin, J. Stat. Phys. 139, 1090 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. W.P. Yudistiawan, S.K. Kwak, D.V. Patil, S. Ansumali, Phys. Rev. E 82 (4), 046701 (2010)

    Article  ADS  Google Scholar 

  22. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001)

    MATH  Google Scholar 

  23. A.T. White, C.K. Chong, J. Comput. Phys. 230 (16), 6367 (2011)

    Article  ADS  Google Scholar 

  24. S.K. Kang, Y.A. Hassan, J. Comput. Phys. 232 (1), 100 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. K. Suga, Y. Kuwata, K. Takashima, R. Chikasue, Comput. Math. Appl. 69 (6), 518 (2015)

    Article  MathSciNet  Google Scholar 

  26. D. d’Humières, M. Bouzidi, P. Lallemand, Phys. Rev. E 63 (6), 066702 (2001)

    Article  Google Scholar 

  27. J. Tölke M. Krafczyk, Int. J. Comp. Fluid Dyn. 22 (7), 443 (2008)

    Article  Google Scholar 

  28. I. Karlin, P. Asinari, Physica A 389 (8), 1530 (2010)

    Article  ADS  Google Scholar 

  29. S. Ubertini, S. Succi, Prog. Comput. Fluid Dyn. 5 (1/2), 85 (2005)

    Article  MathSciNet  Google Scholar 

  30. M.K. Misztal, A. Hernandez-Garcia, R. Matin, H.O. Sørensen, J. Mathiesen, J. Comput. Phys. 297, 316 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. D. Lagrava, Revisiting grid refinement algorithms for the lattice Boltzmann method. Ph.D. thesis, University of Geneva (2012)

    Google Scholar 

  32. S. Ubertini, P. Asinari, S. Succi, Phys. Rev. E 81 (1), 016311 (2010)

    Article  ADS  Google Scholar 

  33. J. Hoffmann, Numerical Methods for Engineers and Scientists (McGraw-Hill, New York, 1992)

    Google Scholar 

  34. H. Xi, G. Peng, S.H. Chou, Phys. Rev. E 59 (5), 6202 (1999)

    Article  ADS  Google Scholar 

  35. O. Filippova, D. Hanel, J. Comput. Phys. 147, 219 (1998)

    Article  ADS  Google Scholar 

  36. S. Ubertini, S. Succi, Commun. Comput. Phys 3, 342 (2008)

    MathSciNet  Google Scholar 

  37. S. Ubertini, S. Succi, G. Bella, Phil. Trans. R. Soc. Lond. A 362, 1763 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  38. X. He, S. Chen, G.D. Doolen, J. Comput. Phys. 146 (1), 282 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  39. J.D. Sterling, S. Chen, J. Comput. Phys. 123 (1), 196 (1996)

    Article  ADS  Google Scholar 

  40. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M. (2017). The Lattice Boltzmann Equation. In: The Lattice Boltzmann Method. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-44649-3_3

Download citation

Publish with us

Policies and ethics