Advertisement

Direct Cu to Cu Bonding and Other Alternative Bonding Techniques in 3D Packaging

  • Tadatomo SugaEmail author
  • Ran He
  • George Vakanas
  • Antonio La Manna
Chapter
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 57)

Abstract

This chapter provides insights into direct Cu to Cu bonding and summarizes several critical empirical results. After comparing the solder-less Cu–Cu bonding with the solder-based bonding, we introduce various Cu-Cu stacking/bonding schemes for different three-dimensional (3D) integration applications. We then review various methods of low-temperature Cu–Cu bonding including: (a) thermo-compression bonding (diffusion bonding), (b) Cu-Cu bonding with passivation capping layers, (c) surface activated bonding (SAB), and (d) alternative bonding methods (Cu/dielectric hybrid bonding and Cu–Cu insertion bonding). The effects of surface activation, surface microstructures and characteristics, and surface passivation for Cu–Cu bonding are highlighted and discussed to understand how the bonding behavior depends on Cu surface cleanness, diffusion, temperature, compression pressure, and bonding atmosphere. Lastly, we introduce the commercial equipment for Cu–Cu bonding for high-volume manufacturing briefly and summarize with recommendations for future directions. 

Keywords

Bonding Interface Bonding Temperature Organic Solderability Preservative Hybrid Bonding Daisy Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The editors would like to thank Hualiang Shi from Intel Corporation for his critical review of this Chapter.

References

  1. 1.
    A. Fan, A. Rahman, R. Reif, Copper wafer bonding. Electrochem. Solid State Lett. 2, 534–536 (1999). doi: 10.1149/1.1390894 CrossRefGoogle Scholar
  2. 2.
    A. Shigetou, N. Hosoda, T. Itoh, T. Suga, Room-temperature direct bonding of CMP-Cu film for bumpless interconnection. In 51st Electronic Components and Technology Conference, 2001, Orlando, pp. 755–760
  3. 3.
    P.R. Morrow, C.-M. Park, S. Ramanathan, M.J. Kobrinsky, M. Harmes, Three-dimensional wafer stacking via Cu-Cu bonding integrated with 65-nm strained-Si/low-k CMOS technology. IEEE Electron Dev. Lett. 27, 335–337 (2006). doi: 10.1109/LED.2006.873424 CrossRefGoogle Scholar
  4. 4.
    A. Shigetou, T. Itoh, M. Matsuo, N. Hayasaka, K. Okumura, T. Suga, Bumpless interconnect through ultrafine Cu electrodes by means of surface-activated bonding (SAB) method. IEEE Trans. Adv. Packag. 29, 218–226 (2006). doi: 10.1109/TADVP.2006.873138 CrossRefGoogle Scholar
  5. 5.
    B. Swinnen, W. Ruythooren, P.D. Moor, L. Bogaerts, L. Carbonell, K.D. Munck, B. Eyckens, S. Stoukatch, T. Tezcan, Z. Tokei, J. Vaes, J.V. Aelst, E. Beyne, 3D integration by Cu-Cu thermo-compression bonding of extremely thinned bulk-Si die containing 10μm pitch through-Si vias. In 2006 International Electron Devices Meeting (IEDM) 2006, pp. 1–4
  6. 6.
    Tezzaron Company History. http://www.tezzaron.com/about-us/company-history. Accessed 18 June 2016
  7. 7.
    G.W. Deptuch, M. Demarteau, J.R. Hoff, R. Lipton, A. Shenai, M. Trimpl, R. Yarema, T. Zimmerman, Vertically integrated circuits at Fermilab. IEEE Trans. Nucl. Sci. 57, 2178–2186 (2010). doi: 10.1109/TNS.2010.2049659 CrossRefGoogle Scholar
  8. 8.
    R. Yarema, G. Deptuch, J. Hoff, F. Khalid, R. Lipton, A. Shenai, M. Trimpl, T. Zimmerman, Vertically integrated circuit development at Fermilab for detectors. J. Instrum. 8, C01052 (2013). doi: 10.1088/1748-0221/8/01/C01052 CrossRefGoogle Scholar
  9. 9.
    Chipworks (2016) Samsung Galaxy S7 Edge Teardown ReportGoogle Scholar
  10. 10.
    M. Higashiwaki, K. Sasaki, T. Kamimura, M.H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 103, 123511 (2013). doi: 10.1063/1.4821858 CrossRefGoogle Scholar
  11. 11.
    T. Fukushima, Y. Yamada, H. Kikuchi, M. Koyanagi, New three-dimensional integration technology using self-assembly technique. In IEEE International Devices Meeting, 2005 IEDM Technical Digest, Washington, 2005, pp. 348–351Google Scholar
  12. 12.
    Y.-S. Tang, Y.-J. Chang, K.-N. Chen, Wafer-level Cu–Cu bonding technology. Microelectron. Reliab. 52, 312–320 (2012). doi: 10.1016/j.microrel.2011.04.016 CrossRefGoogle Scholar
  13. 13.
    C.S. Tan, R. Reif, N.D. Theodore, S. Pozder, Observation of interfacial void formation in bonded copper layers. Appl. Phys. Lett. 87, 201909 (2005). doi: 10.1063/1.2130534 CrossRefGoogle Scholar
  14. 14.
    B. Rebhan, T. Plach, S. Tollabimazraehno, V. Dragoi, M. Kawano, Cu-Cu wafer bonding: an enabling technology for three-dimensional integration. In 2014 International Conference on Electronics Packaging (ICEP), 2014, pp. 475–479Google Scholar
  15. 15.
    B. Rebhan, S. Tollabimazraehno, G. Hesser, V. Dragoi, Analytical methods used for low temperature Cu–Cu wafer bonding process evaluation. Microsyst. Technol. 21, 1003–1013 (2015). doi: 10.1007/s00542-015-2446-2 CrossRefGoogle Scholar
  16. 16.
    W. Yang, M. Akaike, M. Fujino, T. Suga, A combined process of formic acid pretreatment for low-temperature bonding of copper electrodes. ECS J. Solid State Sci. Technol. 2, P271–P274 (2013). doi: 10.1149/2.010306jss CrossRefGoogle Scholar
  17. 17.
    W. Yang, M. Akaike, T. Suga, Effect of formic acid vapor in situ treatment process on Cu low-temperature bonding. IEEE Trans. Compon. Packag. Manuf. Technol. 4, 951–956 (2014). doi: 10.1109/TCPMT.2014.2315761 CrossRefGoogle Scholar
  18. 18.
    P.-I. Wang, S.H. Lee, T.C. Parker, M.D. Frey, T. Karabacak, J.-Q. Lu, T.-M. Lu, Low temperature wafer bonding by copper nanorod array. Electrochem. Solid State Lett. 12, H138–H141 (2009). doi: 10.1149/1.3075900 CrossRefGoogle Scholar
  19. 19.
    T. Ishizaki, R. Watanabe, A new one-pot method for the synthesis of Cu nanoparticles for low temperature bonding. J. Mater. Chem. 22, 25198–25206 (2012). doi: 10.1039/C2JM34954J CrossRefGoogle Scholar
  20. 20.
    C.-M. Liu, H.-W. Lin, Y.-S. Huang, Y.-C. Chu, C. Chen, D.-R. Lyu, K.-N. Chen, K.-N. Tu, Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Sci. Rep. 5, 9734 (2015). doi: 10.1038/srep09734 CrossRefGoogle Scholar
  21. 21.
    T. Shimatsu, M. Uomoto, Atomic diffusion bonding of wafers with thin nanocrystalline metal films. J. Vac. Sci. Technol. B 28, 706–714 (2010). doi: 10.1116/1.3437515 CrossRefGoogle Scholar
  22. 22.
    T. Shimatsu, M. Uomoto, Room temperature bonding of wafers with thin nanocrystalline metal films. ECS Trans. 33, 61–72 (2010). doi: 10.1149/1.3483494 CrossRefGoogle Scholar
  23. 23.
    V. Smet, M. Kobayashi, T. Wang, P.M. Raj, R. Tummala, A new era in manufacturable, low-temperature and ultra-fine pitch Cu interconnections and assembly without solders. In 2014 64th Electronic Components Technology Conference (ECTC), pp. 484–489Google Scholar
  24. 24.
    C.S. Tan, D.F. Lim, S.G. Singh, S.K. Goulet, M. Bergkvist, Cu–Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol. Appl. Phys. Lett. 95, 192108 (2009). doi: 10.1063/1.3263154 CrossRefGoogle Scholar
  25. 25.
    D.F. Lim, J. Wei, K.C. Leong, C.S. Tan, Surface passivation of Cu for low temperature 3D wafer bonding. ECS Solid State Lett. 1, P11–P14 (2012)CrossRefGoogle Scholar
  26. 26.
    D.F. Lim, J. Wei, K.C. Leong, C.S. Tan, Cu passivation for enhanced low temperature (⩽300°C) bonding in 3D integration. Microelectron. Eng. 106, 144–148 (2013). doi: 10.1016/j.mee.2013.01.032 CrossRefGoogle Scholar
  27. 27.
    L. Peng, L. Zhang, J. Fan, H.Y. Li, D.F. Lim, C.S. Tan, Ultrafine pitch (6 μm) of recessed and bonded Cu-Cu interconnects by three-dimensional wafer stacking. IEEE Electron Dev. Lett. 33, 1747–1749 (2012). doi: 10.1109/LED.2012.2218273 CrossRefGoogle Scholar
  28. 28.
    E. Beyne E, The Minerals, Metals & Materials Society, Thiol-based Self-Assembled Monolayers (SAMs) as an alternative surface finish for 3D Cu microbumps. In TMS 2015 Supplemental Proceedings. Wiley, Orlando, 2015, pp. 1353–1360Google Scholar
  29. 29.
    Y.-P. Huang, Y.-S. Chien, R.-N. Tzeng, M.-S. Shy, T.-H. Lin, K.-H. Chen, C.-T. Chiu, J.-C. Chiou, C.-T. Chuang, W. Hwang, H.-M. Tong, K.-N. Chen, Novel Cu-to-Cu bonding with Ti passivation at 180 °C in 3-D integration. IEEE Electron Dev.Lett. 34, 1551–1553 (2013). doi: 10.1109/LED.2013.2285702 CrossRefGoogle Scholar
  30. 30.
    A.K. Panigrahi, S. Bonam, T. Ghosh, S.G. Singh, S.R.K. Vanjari, Ultra-thin Ti passivation mediated breakthrough in high quality Cu-Cu bonding at low temperature and pressure. Mater. Lett. 169, 269–272 (2016). doi: 10.1016/j.matlet.2016.01.126 CrossRefGoogle Scholar
  31. 31.
    Y.-P. Huang, Y.-S. Chien, R.-N. Tzeng, K.-N. Chen, Demonstration and electrical performance of Cu-Cu bonding at 150 °C with Pd passivation. IEEE Trans. Electron. Dev. 62, 2587–2592 (2015). doi: 10.1109/TED.2015.2446507 CrossRefGoogle Scholar
  32. 32.
    E. Beyne, V.J. De, J. Derakhshandeh, L. England, G. Vakanas, Thin Nib or Cob Capping Layer for Non-Noble Metallic Bonding Landing Pads (Springer, New York, 2015)Google Scholar
  33. 33.
    T.H. Kim, M.M.R. Howlader, T. Itoh, T. Suga, Room temperature Cu–Cu direct bonding using surface activated bonding method. J. Vac. Sci. Technol. A 21, 449–453 (2003). doi: 10.1116/1.1537716 CrossRefGoogle Scholar
  34. 34.
    A. Shigetou, T. Itoh, T. Suga, Direct bonding of CMP-Cu films by surface activated bonding (SAB) method. J. Mater. Sci. 40, 3149–3154 (2005). doi: 10.1007/s10853-005-2677-1 CrossRefGoogle Scholar
  35. 35.
    T. Suga, Feasibility of surface activated bonding for ultra-fine pitch interconnection––a new concept of bump-less direct bonding for system level packaging. In Electronic Components Technology Conference. 2000 Proceedings 50th IEEE, Las Vegas, pp. 702–705
  36. 36.
    T. Suga, K. Otsuka, Bump-less interconnect for next generation system packaging. In Electronic Components and Technology Conference , 2001 Proceedings, 51st IEEE , pp. 1003–1008
  37. 37.
    A. Shigetou, T. Itoh, K. Sawada, T. Suga, Bumpless interconnect of 6-μm-pitch Cu electrodes at room temperature. IEEE Trans. Adv. Packag. 31, 473–478 (2008). doi: 10.1109/TADVP.2008.920644 CrossRefGoogle Scholar
  38. 38.
    A. Shigetou, T. Suga, Modified diffusion bonding of chemical mechanical polishing Cu at 150 °C at ambient pressure. Appl. Phys. Express 2, 056501 (2009). doi: 10.1143/APEX.2.056501 CrossRefGoogle Scholar
  39. 39.
    A. Shigetou, T. Suga, Vapor-assisted surface activation method for homo- and heterogeneous bonding of Cu, SiO2, and polyimide at 150°C and atmospheric pressure. J. Electron. Mater. 41, 2274–2280 (2012). doi: 10.1007/s11664-012-2091-9 CrossRefGoogle Scholar
  40. 40.
    A. Shigetou, T. Suga, Modified diffusion bond process for chemical mechanical polishing (CMP)-Cu at 150 °C in ambient air. In 59th Electronic Components and Technology Conference, San Diego, 2009, pp. 365–369
  41. 41.
    A. Shigetou , T. Suga, Homo/heterogeneous bonding of Cu, SiO2, and polyimide by low temperature vapor-assisted surface activation method. In IEEE 61st Electronic Components and Technology Conference (ECTC ), Lake Buena Vista, 2011, pp. 32–36
  42. 42.
    T. Plach, K. Hingerl, S. Tollabimazraehno, G. Hesser, V. Dragoi, M. Wimplinger, Mechanisms for room temperature direct wafer bonding. J. Appl. Phys. 113, 094905 (2013). doi: 10.1063/1.4794319 CrossRefGoogle Scholar
  43. 43.
    T. Suni, K. Henttinen, I. Suni, J. Mäkinen, Effects of plasma activation on hydrophilic bonding of Si and SiO2. J. Electrochem. Soc. 149, G348–G351 (2002). doi: 10.1149/1.1477209 CrossRefGoogle Scholar
  44. 44.
    Y.-H. Wang, K. Nishida, M. Hutter, T. Kimura, T. Suga, Low-temperature process of fine-pitch Au–Sn bump bonding in ambient air. Jpn. J. Appl. Phys. 46, 1961 (2007). doi: 10.1143/JJAP.46.1961 CrossRefGoogle Scholar
  45. 45.
    K. Okumura, E. Higurashi, T. Suga, K. Hagiwara, Influence of air exposure time on bonding strength in Au-Au surface activated wafer bonding. In 2015 International Conference on Electronics Packaging and IMAPS All Asia Conference , ICEP-IACC, 2015, pp. 448–451
  46. 46.
    H. Ishida, T. Ogashiwa, Y. Kanehira, S. Ito, T. Yazaki , J. Mizuno, Low-temperature, surface-compliant wafer bonding using sub-micron gold particles for wafer-level MEMS packaging. In I EEE 62nd Electronic Components and Technology Conference, 2012, pp. 1140–1145
  47. 47.
    M. Park, S. Baek, S. Kim, S.E. Kim, Argon plasma treatment on Cu surface for Cu bonding in 3D integration and their characteristics. Appl. Surf. Sci. 324, 168–173 (2015). doi: 10.1016/j.apsusc.2014.10.098 CrossRefGoogle Scholar
  48. 48.
    S.L. Chua, G.Y. Chong , Y.H. Lee, C.S. Tan, Direct copper-copper wafer bonding with Ar/N2 plasma activation. In IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2015, pp. 134–137
  49. 49.
    P. Enquist, G. Fountain, C. Petteway, A. Hollingsworth, H. Grady, Low cost of ownership scalable copper direct bond interconnect 3D IC technology for three dimensional integrated circuit applications. In IEEE International Conference On 3D System Integration , 2009, pp. 1–6
  50. 50.
    P. Enquist, Metal/silicon oxide hybrid bonding, in Handbook of Wafer Bonding, ed. by P. Ramm, J.J.-Q. Lu, M.M.V. Taklo (Wiley, Weinheim, 2012), pp. 261–278CrossRefGoogle Scholar
  51. 51.
    Y.-L. Chao, Q.-Y. Tong, T.-H. Lee, M. Reiche, R. Scholz, J.C.S. Woo, U. Gösele, Ammonium hydroxide effect on low-temperature wafer bonding energy enhancement. Electrochem. Solid State Lett. 8, G74–G77 (2005). doi: 10.1149/1.1857671 CrossRefGoogle Scholar
  52. 52.
    Q.-Y. Tong, G. Fountain, P. Enquist, Room temperature SiO2/SiO2 covalent bonding. Appl. Phys. Lett. 89, 042110 (2006). doi: 10.1063/1.2240232 CrossRefGoogle Scholar
  53. 53.
    L. Di Cioccio, S. Moreau, L. Sanchez, F. Baudin, P. Gueguen, S. Mermoz, Y. Beilliard, R. Taibi, In Cu/SiO 2 Hybrid bonding, ed. by P. Garrou, M. Koyanagi, P. Ramm. Handbook of 3D Integration, Wiley-VCH, Dresden, 2014. pp. 295–312Google Scholar
  54. 54.
    L.D. Cioccio, P. Gueguen, R. Taibi, D. Landru, G. Gaudin, C. Chappaz, F. Rieutord, F. de Crecy, I. Radu, L.L. Chapelon, L. Clavelier, An overview of patterned metal/dielectric surface bonding: mechanism, alignment and characterization. J. Electrochem. Soc. 158, P81–P86 (2011). doi: 10.1149/1.3577596 CrossRefGoogle Scholar
  55. 55.
    I. Radu, D. Landru, G. Gaudin, G. Riou, C. Tempesta, F. Letertre, L. Di Cioccio, P. Gueguen, T. Signamarcheix, C. Euvrard, others. In IEEE International 3D Systems Integration Conference (3DIC ), IEEE, Munich, 2010, pp. 1–6
  56. 56.
    C. Sabbione, L.D. Cioccio, L. Vandroux, J.-P. Nieto, F. Rieutord, Low temperature direct bonding mechanisms of tetraethyl orthosilicate based silicon oxide films deposited by plasma enhanced chemical vapor deposition. J. Appl. Phys. 112, 063501 (2012). doi: 10.1063/1.4752258 CrossRefGoogle Scholar
  57. 57.
    P. Gondcharton, B. Imbert, L. Benaissa, V. Carron, M. Verdier, Kinetics of low temperature direct copper–copper bonding. Microsyst. Technol. 21, 995–1001 (2015). doi: 10.1007/s00542-015-2436-4 CrossRefGoogle Scholar
  58. 58.
    P. Gueguen, L. Di Cioccio, P. Gergaud, M. Rivoire, D. Scevola, M. Zussy, A.M. Charvet, L. Bally, D. Lafond, L. Clavelier, Copper direct-bonding characterization and its interests for 3D integration. J. Electrochem. Soc. 156, H772 (2009). doi: 10.1149/1.3187271 CrossRefGoogle Scholar
  59. 59.
    A. Shigetou , T. Suga, Modified diffusion bonding for both Cu and SiO2 at 150 °C in ambient air. In 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC ), Las Vegas, 2010, pp. 872–877
  60. 60.
    R. He, M. Fujino, A. Yamauchi, Y. Wang, T. Suga, Combined surface activated bonding technique for low-temperature Cu/dielectric hybrid bonding. ECS J. Solid State Sci. Technol. 5, P419–P424 (2016). doi: 10.1149/2.0201607jss CrossRefGoogle Scholar
  61. 61.
    R. He, M. Fujino, A. Yamauchi, T. Suga, Combined surface-activated bonding technique for low-temperature hydrophilic direct wafer bonding. Jpn. J. Appl. Phys. 55, 04EC02 (2016). doi: 10.7567/JJAP.55.04EC02 CrossRefGoogle Scholar
  62. 62.
    Q.-Y. Tong J.G.G. Fountain, P.M. Enquist, Method for low temperature bonding and bonded structure. US Patent 6,902,987Google Scholar
  63. 63.
    C. Sanders, Continued adoption of low temperature direct bond technology for high volume 3D commercial applications. In 3D Architectures for Semiconductor Integration and Packaging (3D ASIP), 2012Google Scholar
  64. 64.
    L.D. Cioccio, F. Baudin, P. Gergaud, V. Delaye, P.-H. Jouneau, F. Rieutord, T. Signamarcheix, Modeling and integration phenomena of metal-metal direct bonding technology. ECS Trans. 64, 339–355 (2014). doi: 10.1149/06405.0339ecst CrossRefGoogle Scholar
  65. 65.
    C. Rauer, H. Moriceau, F. Fournel, A.M. Charvet, C. Morales, N. Rochat, L. Vandroux, F. Rieutord, T. McCormick, I. Radu, Treatments of deposited SiOx surfaces enabling low temperature direct bonding. ECS J. Solid State Sci. Technol. 2, Q147–Q150 (2013). doi: 10.1149/2.004309jss CrossRefGoogle Scholar
  66. 66.
    C. Ventosa, C. Morales, L. Libralesso, F. Fournel, A.M. Papon, D. Lafond, H. Moriceau, J.D. Penot, F. Rieutord, Mechanism of thermal silicon oxide direct wafer bonding. Electrochem. Solid State Lett. 12, H373–H375 (2009). doi: 10.1149/1.3193533 CrossRefGoogle Scholar
  67. 67.
    F. Fournel, C. Martin-Cocher, D. Radisson, V. Larrey, E. Beche, C. Morales, P.A. Delean, F. Rieutord, H. Moriceau, Water stress corrosion in bonded structures. ECS J. Solid State Sci. Technol. 4, P124–P130 (2015). doi: 10.1149/2.0031505jss CrossRefGoogle Scholar
  68. 68.
    P. Gondcharton, B. Imbert, L. Benaissa, M. Verdier, Voiding phenomena in copper-copper bonded structures: role of creep. ECS J. Solid State Sci. Technol. 4, P77–P82 (2015). doi: 10.1149/2.0081503jss CrossRefGoogle Scholar
  69. 69.
    P. Gondcharton, B. Imbert, L. Benaissa, F. Fournel, M. Verdier, Effect of copper–copper direct bonding on voiding in metal thin films. J. Electron. Mater. 44, 4128–4133 (2015). doi: 10.1007/s11664-015-3992-1 CrossRefGoogle Scholar
  70. 70.
    S. Lhostis, A. Farcy, E. Deloffre, F. Lorut, S. Mermoz, Y. Henrion, L. Berthier, F. Bailly, D. Scevola, F. Guyader, F. Gigon, C. Besset, S. Pellissier, L. Gay, N. Hotellier, M. Arnoux, A.-L. Le Berrigo, S. Moreau, V. Balan, F. Fournel, A. Jouve, S. Chéramy , B. Rebhan, G.A. Maier, L. Chitu, Reliable 300 mm wafer level hybrid bonding for 3D stacked CMOS image sensors. In IEEE 66th Electronic Components and Technology Conference, Las Vegas, 2016, pp. 869–876Google Scholar
  71. 71.
    H. Takagi, J. Utsumi, M. Takahashi, R. Maeda, Room-temperature bonding of oxide wafers by Ar-beam surface activation. ECS Trans. 16, 531–537 (2008). doi: 10.1149/1.2982908 CrossRefGoogle Scholar
  72. 72.
    F. Liu, R.R. Yu , A.M. Young, J.P. Doyle, X. Wang, L. Shi, K.-N. Chen , X. Li, D.A. Dipaola , D. Brown, C.T. Ryan , J.A. Hagan, K.H. Wong, M. Lu, X. Gu, N.R. Klymko, E.D. Perfecto, A.G. Merryman , K.A. Kelly, S. Purushothaman, S.J. Koester, R. Wisnieff, W. Haensch, A 300-mm wafer-level three-dimensional integration scheme using tungsten through-silicon via and hybrid Cu-adhesive bonding. In IEEE International Electron Devices Meeting (IEDM) 2008, pp. 1–4
  73. 73.
    J.-Q. Lu, J.J. McMahon, R.J. Gutmann, Hybrid metal/polymer wafer bonding platform, in Handbook of Wafer Bonding, ed. by J.J.-Q. Lu, M.M.V. Taklo, P. Ramm (Wiley-VCH, Weinheim, 2012), pp. 215–236CrossRefGoogle Scholar
  74. 74.
    K. Hozawa, M. Aoki, F. Furuta, K. Takeda, A. Yanagisawa , H. Kikuchi, T. Mitsuhashi, H. Kobayashi, 3D integration technology using hybrid wafer bonding and its electrical characteristics. In 13th International Symposium on Electronics Packaging (ICEP 2013), Osaka, pp. 118–122Google Scholar
  75. 75.
    J.J. McMahon, J.-Q, Lu, R.J. Gutmann, Wafer bonding of damascene-patterned metal/adhesive redistribution layers for via-first three-dimensional (3D) interconnect. In Proceedings Electronic Components and Technology, 2005, ECTC '05, vol. 1, 2005, pp. 331–336
  76. 76.
    Z.-C. Hsiao, C.-T. Ko, H.-H. Chang, H.-C. Fu, C.-W. Chiang, C.-K. Hsu, W.-W. Shen, W.-C. Lo, Cu/BCB hybrid bonding with TSV for 3D integration by using fly cutting technology (IEEE, Kyoto, 2015), pp. 834–837Google Scholar
  77. 77.
    T. Sakai, N. Imaizumi, S. Sakuyama, Hybrid bonding technology with Cu-Cu/adhesives for high density 2.5D/3D integration. In IEEE, Big Island, 2016, pp. 1–6Google Scholar
  78. 78.
    R. He, T. Suga, Effects of Ar plasma and Ar fast atom bombardment (FAB) treatments on Cu/polymer hybrid surface for wafer bonding. In International Conference on Electronics Packaging (ICEP ), Toyama, pp. 78–81
  79. 79.
    C. Okoro, R. Agarwal, P. Limaye, B. Vandevelde, D. Vandepitte, E. Beyne, Insertion bonding: A novel Cu-Cu bonding approach for 3D integration. In 60th IEEE International Conference on Electronic Components and Technology Conference (ECTC 2010) Proceedings, pp. 1370–1375
  80. 80.
    G.W. Deptuch, G. Carini, P. Grybos, P. Kmon, P. Maj, M. Trimpl, D.P. Siddons, R. Szczygiel, R. Yarema, Design and tests of the vertically integrated photon imaging chip. IEEE Trans. Nucl. Sci. 61, 663–674 (2014). doi: 10.1109/TNS.2013.2294673 CrossRefGoogle Scholar
  81. 81.
    G.W. Deptuch, G. Carini, T. Collier, P. Gryboś, P. Kmon, R. Lipton, P. Maj, D.P. Siddons, R. Szczygieł, R. Yarema, Results of tests of three-dimensionally integrated chips bonded to sensors. IEEE Trans. Nucl. Sci. 62, 349–358 (2015). doi: 10.1109/TNS.2014.2378784 CrossRefGoogle Scholar
  82. 82.
    G.W. Deptuch, G. Carini, P. Enquist, P. Gryboś, S. Holm, R. Lipton, P. Maj, R. Patti, D.P. Siddons, R. Szczygieł, R. Yarema, Fully 3-D integrated pixel detectors for X-rays. IEEE Trans. Electron. Dev. 63, 205–214 (2016). doi: 10.1109/TED.2015.2448671 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Tadatomo Suga
    • 1
    Email author
  • Ran He
    • 1
  • George Vakanas
    • 2
  • Antonio La Manna
    • 3
  1. 1.The University of TokyoTokyoJapan
  2. 2.Intel CorporationChandlerUSA
  3. 3.IMEC ConsortiumLeuvenBelgium

Personalised recommendations