Fundamentals and Failures in Die Preparation for 3D Packaging

  • Hualiang ShiEmail author
  • Erasenthiran Poonjolai
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 57)


Through-Silicon-Via (TSV) wafer processes have been reviewed by several authors previously, including temporary adhesive wafer bonding, high aspect ratio silicon etch, and wafer singulation. This chapter starts with a brief overview of TSV wafer fabrication and singulation processes. Then, it focuses on several key process issues which have not been discussed in previous review articles. The first process issue discussed in details here is the device wafer buckling or wrinkling postwafer thinning. This challenge might cause yield loss at the downstream lithography process. The fundamental mechanism behind this issue is investigated and several solutions are proposed. The second process discussed in details here is wafer debonding. Based on viscosity definition and wafer geometry, a closed-form analytical solution is proposed for the thermal sliding wafer debonding process, which can be used for process control and throughput optimization. The next two processes discussed are laser scribe and saw dicing, which impact die edge chipping and low-k inter layer dielectric (ILD) delamination. A closed-form solution of chipping induced by saw dicing is also investigated. The last process discussed in this chapter is the challenges and solution options for die pick and place.


Chemical Mechanical Polishing Chemical Mechanical Polish Process Blade Loading Debonding Process Carrier Wafer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge Dr. Sairam Agraharam of Intel Corp. for valuable discussions. The editors would like to thank Guotao Wang of Intel Corp. for his critical review of this Chapter.


  1. 1.
    F. Niklaus, G. Stemme, J.-Q. Lu, R.J. Gutmann, Adhesive wafer bonding. J. Appl. Phys. 99, 031101 (2006)CrossRefGoogle Scholar
  2. 2.
    B.G. Yacobi, S. Martin, K. Davis, A. Hudson, M. Hubert, Adhesive bonding in microelectronics and photonics. J. Appl. Phys. 91, 6227 (2002)CrossRefGoogle Scholar
  3. 3.
    B. Wu, A. Kumar, S. Pamarthy, High aspect ratio silicon etch: a review. J. Appl. Phys. 108, 051101 (2010)CrossRefGoogle Scholar
  4. 4.
    V. Jansen, M.J. de Boer, S. Unnikrishnan, M.C. Louwerse, M.C. Elwenspoek, Black silicon method X: a review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment. J. Micromech. Microeng. 19(033001) (2009)Google Scholar
  5. 5.
    J.P. Gambino, S.A. Adderly, J.U. Knickerbocker, An overview of through-silicon-via technology and manufacturing challenges. Microelectron. Eng. 135, 73–106 (2015)CrossRefGoogle Scholar
  6. 6.
    D. Henry, F. Jacquet, M. Neyret, X. Bailin, T. Enot, V. Lapras, C. Brunet-Manquat, J. Charbonnier, B. Aventurier, N. Sillon, Through silicon vias technology for CMOS image sensor packaging. Electronic Components and Technology Conference, 556–562, 2008Google Scholar
  7. 7.
    M. Puech, J.M. Thevenoud, J.M. Gruffat, N. Launay, N. Arnal, P. Godinat, Fabrication of 3D packaging TSV using DRIE. Design, Test, Integration and Packaging of MEMS/MOEMS (2008)Google Scholar
  8. 8.
    J. Lu, J. Mcmahon, R. Gutmann, 3D integration using adhesive, metal, and metal/adhesive as wafer bonding interfaces. MRS Fall Meeting Symposium E, 2008Google Scholar
  9. 9.
    R. Puligadda, S. Pillalamarri, W. Hong, C. Brubaker, M. Wimplinger, S. Pargfrieder, High-performance temporary adhesive for wafer bonding applications. Mater. Res. Soc. Proc. 970 (2007). 0970-Y04-09Google Scholar
  10. 10.
    M.H. Shungwu, D.L.W. Pang, S. Nathapong, P. Marimuthu, Temporary bonding of wafer to carrier for 3D-wafer level packaging. Electronics Packaging Technologies Conference, 405–411, 2008Google Scholar
  11. 11.
    J. Charbonnier, S. Cheramy, D. Henry, A. Astier, J. Brun, N. Sillon, Integration of a temporary carrier in a TSV process flow. Electronic Components and Technology Conference, 865–871, 2009Google Scholar
  12. 12.
    S. Pargfrieder, J. Burggraf, D. Burgstaller, M. Privett, A. Jouve, D. Henry, N. Sillon, 3D integration with TSV: temporary bonding and debonding. Solid State Technology (March 2009), 38–43Google Scholar
  13. 13.
    D. Bai, X. Zhong, R. Puligadda, J. Burggraf, D. Burgstaller, C. Lypka, J. Verzosa, Edge protection of temporary bonded wafers during backgrinding. ECS Trans. 18(1), 757–762 (2009)CrossRefGoogle Scholar
  14. 14.
    J.P. Gambino, Thin silicon wafer processing and strength characterization. 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, 199–207, 2013Google Scholar
  15. 15.
    M.K. Grief, J.A. Steele Jr., Warpage and mechanical strength studies of ultra thin 150 mm wafers. IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, 190–194, 1996Google Scholar
  16. 16.
    W. Kroninger, F. Mariani, Thinning and singulation of silicon: root causes of the damage in thin chips. Electronic Components and Technology Conference, 1317–1322, 2006Google Scholar
  17. 17.
    S. Chen, I.G. Shih, Y.N. Chen, C.Z. Tsai, J.W. Lin, E. Wu, How to improve chip strength to avoid die cracking in a package. IEEE Inter Society Conference on Thermal Phenomena, 268–273, 2004Google Scholar
  18. 18.
    V.L.W. Sheng, N. Khan, D. Kripesh, Y.S. UK, Ultra thinning of wafer for embedded module. IEEE Electronics Packaging Technology Conference, 837–842, 2006Google Scholar
  19. 19.
    L. Wetz, J. White, B. Keser, Improvement in WL-CSP reliability by wafer thinning. IEEE Electronic Components and Technology Conference, 853–856, 2003Google Scholar
  20. 20.
    S. Farrens, Wafer and die bonding technologies for 3D integration. MRS Fall 2008 Proceedings E Google Scholar
  21. 21.
    L. Marinier, W.V. Noort, R. Pellens, B. Sutedja, R. Dekker, H.V. Zeijl, Front- to back-side overlay optimization after wafer bonding for 3D integration. Elsevier ScienceGoogle Scholar
  22. 22.
    H. Shi, H. Huang, J. Bao, J. Im, P.S. Ho, Y. Zhou, J.T. Pender, M. Armacost, D. Kyser, Plasma altered layer model for plasma damage characterization of porous OSG films. IEEE Internationa Interconnect Technology Conference, 78–80, 2009Google Scholar
  23. 23.
    H. Shi, H. Huang, J. Im, P.S. Ho, Y. Zhou, J.T. Pender, M. Armacost, D. Kyser, Minimization of plasma ashing damage to OSG low-k dielectrics. IEEE International Interconnect Technology Conference, 1–3, 2010Google Scholar
  24. 24.
    H. Shi, Mechanistic study of plasma damage to porous low-k: process development and dielectric recover, PhD Dissertation, The University of Texas at Austin, 2010Google Scholar
  25. 25.
    C. Cassidy, F. Renz, J. Kraft, F. Schrank, Depth-resolved photoemission microscopy for localization of leakage currents in through Silicon Vias (TSVs). 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, 35–740, 2009Google Scholar
  26. 26.
    Y. Mizushima, H. Kitada, K. Koshikawa, S. Suzuki, T. Nakamura, T. Ohba, Novel through silicon vias leakage current evaluation using infrared-optical beam irradiation. Jpn. J. Appl. Phys. 51(5S) (2012)Google Scholar
  27. 27.
    N. Ranganathan, D.Y. Lee, L. Youhe, G. Lo, K. Prasad, K.L. Pey, N. Ranganathan, D.Y. Lee, L. Youhe, G. Lo, K. Prasad, K.L. Pey, Influence of Bosch etch process on electrical isolation of TSV structures. IEEE Trans. Compon. Packag. Manuf. Technol. 1(10), 1497–1507 (2011)CrossRefGoogle Scholar
  28. 28.
    T. Nakamura, H. Kitada, Y. Mizushima, N. Maeda, K. Fujimoto, T. Ohba, Comparative study of side-wall roughness effects on leakage currents in through-silicon via interconnects. 3D Systems Integration Conference (3DIC), 2011 I.E. International, 1–4, 2012Google Scholar
  29. 29.
    J.C. Lin, W.C. Chiou, K.F Yang, H.B. Chang, Y.C. Lin, E.B. Liao, J.P. Hung, Y.L. Lin, P.H. Tsai, Y.C. Shih, T.J. Wu, W.J. Wu, F.W. Tsai, Y.H. Huang, T.Y. Wang, C.L. Yu, C.H. Chang, M.F. Chen, S.Y. Hou, C.H. Tung, S.P. Jeng, D.C.H. Yu, High density 3D integration using CMOS foundry technologies for 28 nm node and beyond. IEEE International Electron Devices Meeting (IEDM), 2.1.1–2.1.4, 2010Google Scholar
  30. 30.
    T. Bandyopadhyay, R. Chatterjee, D. Chung, M. Swaminathan, R. Tummala, Electrical modeling of through silicon and package vias. IEEE International Conference on 3D System Integration, 1–8, 2009Google Scholar
  31. 31.
    J. An, K. Moon, S. Lee, D. Lee, K. Yun, B. Park, H. Lee, J. Sue, Y. Park, G. Choi, H. Kang, C. Chung, Annealing process and structural considerations in controlling extrusion-type defects Cu TSV. IEEE International Interconnect Technology Conference, 1–3, 2012Google Scholar
  32. 32.
    F. Inoue, T. Shimizu, R. Arima, H. Miyake, S. Shingubara, Electroless deposition of barrier and seed layers for via last Cu-TSV metalization. IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), 1–3, 2012Google Scholar
  33. 33.
    M. Vagues, Analysing backside chipping issues of the die at wafer saw, in Partial Fulfillment of MatE 234, 10 May 2003, 23 pGoogle Scholar
  34. 34.
    D. Lishan, T. Laserand, K. Mackenzie, D. Pays-Volard, L. Martinez et al., Wafer dicing using dry etching on standard tapes and frames. International Symposium on Microelectronics, vol. 2014, no. 1. International Microelectronics Assembly and Packaging Society, 2014Google Scholar
  35. 35.
    H. Mei, R. Huang, H. Mei, R. Huang et al., Buckling modes of elastic thin films on elastic substrates. Appl. Phys. Lett. 90, 151902 (2007)CrossRefGoogle Scholar
  36. 36.
    R. Huang, Kinetic wrinkling of an elastic film on a viscoelastic substrate. J. Mech. Phys. Solids 53, 63–89 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    H. Mei, R. Huang, Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates. Mech. Mater. 43, 627–642 (2011)CrossRefGoogle Scholar
  38. 38.
    W.S. Lei, A. Kumar, R. Yalamanchi, Die singulation technologies for advanced packaging: A critical review. J. Vac. Sci. Technol. B 30(4), 040801-1-27 (2012)CrossRefGoogle Scholar
  39. 39.
    M. Privett, F. Murauer, J. Burggraf, S. Pargfrieder, TSV thinned wafer debonding proces optimization. IWLPC (Wafer-Level Packaging) Conference Proceedings, 144–148, 2008Google Scholar
  40. 40.
    J. Li, H. Hwang, E. Ahn et al., Laser dicing and subsequent die strength enhancement technologies for ultra-thin wafer. Electronics Components and Technology Conference, 761–766, 2007Google Scholar
  41. 41.
    C.M. Dunsky, Laser material processing in microelectronics manufacturing: status and near term-term opportunities. Proc SPIE 5713, Photon Processing in Mircroelectronics and Photonics IV, 200–214, 2005Google Scholar
  42. 42.
    S.Y. Luo, Z.W. Wang, Studies of chipping mechanisms for dicing silicon wafers. Int. J. Adv Manuf. 35, 1206–1218 (2008)CrossRefGoogle Scholar
  43. 43.
    K.W. Shi, K.Y. Yow, The characteristics and factors of a wafer dicing blade and its optimized interactions required for singulation high metal stack low-k wafers. IEEE 15th Electronics Packaging Technology Conference (EPTC 2013), 208–212Google Scholar
  44. 44.
    J.W. Lin, M.H. Cheng, Investigation of chipping and wear of silicon wafer dicing. J. Manuf. Process 16, 373–378 (2014)CrossRefGoogle Scholar
  45. 45.
    S. Abdullah, S.M. Yusof, A. Jalar, M.F. Abdullah et al., Step cut for dicing laminated wafer in a QFN package. Solid State Sci. Technol. 16(2), 198–206 (2008)Google Scholar
  46. 46.
    M. Kumagai, T. Sakamoto, E. Ohmura, Laser processing of dobed silicon wafer by the Stealth Dicing, IEEE 1-4244-1142-4/07 (2007)Google Scholar
  47. 47.
    W.H. Teh, D.S. Boning, R.E. Welsh, Multi-strata stealth dicing before grinding for singulation-defects elimination and die strength enhancement: Experiment and simulation. IEEE Trans. Semicond. Manuf. 28(3), 408–423 (2015)CrossRefGoogle Scholar
  48. 48.
    E. Fogarassy, S. Lazare, Laser Ablation of Electronic Materials (Elsevier, North Holland, 1992)Google Scholar
  49. 49.
    J.C. Miller, Laser Ablation, Springer Series, 1994Google Scholar
  50. 50.
    R.E. Russo, X.L. Mao, O.V. Borisvo, Laser ablation sampling. Trends Anal. Chem. 17(8–9), 461–469 (1988)Google Scholar
  51. 51.
    S.S. Mao, Experimental and Theoretical Studies of Picosecond Laser Interactions with Electronic Materials-Laser Ablation (University of California, Berkeley, CA, 2000)CrossRefGoogle Scholar
  52. 52.
    J.R. Ho, C.P. Grigoropoulos, J.A.C. Humphrey, Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals. J. Appl. Phys. 78, 4606–4709 (1995)CrossRefGoogle Scholar
  53. 53.
    G. Callies, P. Berger, H. Hugel, Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation. J. Phys. D 794–806 (1995)Google Scholar
  54. 54.
    Y. Zhang, D.Y. Tzou, J.K. Chen, Micro- and nanoscale heat transfer in femtosecond laser processing of metals. Comput. Phys. 1–45 (2015)Google Scholar
  55. 55.
    A. Okano, K. Takayanagi, Laser-induced fluorescene from collisionaly excited Si atoms in laser ablation plume. J. Appl. Phys. 86, 3964–3972 (1999)CrossRefGoogle Scholar
  56. 56.
    X. Zeng, X. Mao, R. Greif, R.E. Russo, Ultraviolet femtosecond and nanosecond laser ablation of silicon: ablation efficiency and laser-induced plasma expansion. Proc SPIE 2004, 5448, 1150Google Scholar
  57. 57.
    C. Pasquini, J. Cortez, L.M.C. Silva, F.B. Gonzaga, Laser induced breakdown spectroscopy. J. Braz. Chem. Soc. 18(3), 463–512 (2007)CrossRefGoogle Scholar
  58. 58.
    L.J. Radziemski, D.A. Cremers, Handbook of Laser Induced Breakdown Spectroscopy (Wiley, New York, NY, 2006)Google Scholar
  59. 59.
    G.M. Weyl, Laser-Induced Plasmas and Applications (Marcel Dekker, New York, NY, 1989)Google Scholar
  60. 60.
    C.A. Sacchi, Laser-induced electric breakdown in water. J. Opt. Soc. Am. B 8(2), 337–345 (1991)MathSciNetCrossRefGoogle Scholar
  61. 61.
    M.S. Amer, M.A. El-Ashry et al., Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers. Appl. Surf. Sci. 242, 162–167 (2005)CrossRefGoogle Scholar
  62. 62.
    A.T. Cheung, Dicing advanced materials for microelectronics. International Symposium on Advanced Packaging Materials: Processes, Properties, and Interfaces, 149–152, 2005Google Scholar
  63. 63.
    K.W. Shi, Y.B. Kar et al., Optimization of wafer singulation process on copper/low-k materials for semiconductor device assembly. Aust. J. Basic Appl. Sci. 8(22), 6–11 (2014)Google Scholar
  64. 64.
    T.J. Su, C.L. Chiu, Y.F. Chen et al., Improvement of wafer saw film burr issues. Int. J. Model. Optim. 5(5), 345–348 (2015)CrossRefGoogle Scholar
  65. 65.
    Disco Corporation, The Cutting Edge: Technical Newsletter, no 5, 2002Google Scholar
  66. 66.
    I. Weisshaus, D. Shi, U. Efrat, Wafer dicing. Solid State Technology: Insight for Electronics Manufacturing Google Scholar
  67. 67.
    Z.Y. Zhang, F.W. Huo et al., Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material. Int. J. Mach. Tools Manuf. 51(1), 18–24 (2011)CrossRefGoogle Scholar
  68. 68.
    Z.Y. Zhang, Y.Q. Wu et al., Phase transformation of single crystal silicon induced by grinding with ultrafine diamond grits. Scripta Mater 64(2), 177–180 (2011)CrossRefGoogle Scholar
  69. 69.
    S. Malkin, C.S. Guo, Grinding Technology: Theory and Applications of Machining with Abrasives, 2nd edn. (Industrial Press, New York, 2008), pp. 54–79Google Scholar
  70. 70.
    H. Zhou, S. Qiu, Y. Huo, N. Zhang, High-speed dicing of silicon wafers conducted using ultrathin blades. Int. J. Adv. Manuf. Technol. 66, 947–953 (2013)CrossRefGoogle Scholar
  71. 71.
    P.J. Kim, Y.D. Ha, H.H. Park, J.H. Park, Development of die-bonder with multi and matrix picker and placer to increase production capacity. Proceedings of the World Congress on Engineering and Computer Science, vol. 1 (2012), 978–988Google Scholar
  72. 72.
    Z. Liu, Reliable peeling of ultrathin die with multineedle ejector. IEEE Trans. Compon. Packag. Manuf. Technol. 4(9), 2156–3950 (2014)Google Scholar
  73. 73.
    T.H. Cheng, C.C. Du, C.H. Tseng, Study in IC chip failure during pick-up process by using experiemntal and finite element methods. J. Mater. Process. Technol. 172, 407–416 (2006)CrossRefGoogle Scholar
  74. 74.
    N. Saiki, K. Inaba, K. Kishimoto, H. Seno, K. Ebe, Study on peeling behavior in pick-up process of IC chip with adhesive tape. J. Solid Mech. Mater. Eng. 4(7), 1051–1060 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Intel CorporationChandlerUSA

Personalised recommendations