Microstructural and Reliability Issues of TSV

  • Praveen Kumar
  • Indranath Dutta
  • Zhiheng HuangEmail author
  • Paul Conway
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 57)


The copper pumping problem exemplifies the complex reliability issues still to be resolved for TSV structures. From a materials science perspective the reliability issues presented by TSVs are linked to manufacturing processes and the resultant microstructure formed. Routine finite element-based reliability studies that treat the TSV filler as an isotropic and homogeneous material are not capable of providing a sufficiently thorough explanation of the observed copper extrusion/intrusion behavior. Rather, the material behavior and properties at multiple scales are required as the input data for effective reliability analysis of three-dimensional TSV stacked ICs. Such 3-D ICs also push the scale of materials to a limit where the anisotropy of material properties, recovery, recrystallization, and time-dependent phase morphological evolution further complicate reliability issues. This chapter reviews both experimental and modeling approaches that address the microstructural and reliability issues of TSVs. Crystal plasticity-based finite element method and phase field crystal method with an inherently multiscale nature are identified as promising modeling techniques to enable atomistically informed reliability analysis of TSVs.


Hydrostatic Stress Void Growth Interfacial Shear Stress Reliability Issue Body Center Cubic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The editors would like to thank Prof. Tengfei Jiang from University of Central Florida for her critical review of this chapter. The authors (PK and ID) acknowledge financial support for some of the reported work by the National Science Foundation (DMR-0513874 and DMR-1309843), Cisco Research Council, and the Semiconductor Research Corporation. The contributions of, and collaborations with several colleagues (Dr. Lutz Meinshausen, formerly of Washington State University, and currently at Global Foundries, Dresden, Germany; Dr. Tae-Kyu Lee, formerly of Cisco Systems, and currently at Portland State University; Dr. Ravi Mahajan of Intel Corporation; Dr. Vijay Sarihan of Freescale Semiconductor, and Professor Muhannad Bakir of Georgia Tech) are gratefully acknowledged. The assistance of current and former colleagues (Dr. Hanry Yang of Washington State University, and Dr. Zhe Huang, formerly of Washington State University, and currently at Seagate Technologies) with the literature survey is also gratefully acknowledged. The author (ZH) acknowledges financial support for his research by the Pearl River Science and Technology Nova Program of Guangzhou under grant no. 2012J2200074, the National Natural Science Foundation of China (NSFC) under grant no. 51004118, and Guangdong Natural Science Foundation under grant no. 2015A030312011. The author (ZH) also acknowledges useful discussions with Dr. F. Roters of Max Planck Institute for Iron Research on the CPFE method and Prof. N. Provatas of McGill University on phase crystal models.


  1. 1.
    K. Athikulwongse, A. Chakraborty, J.-S. Yang, D.Z. Pan, S.K. Lim, Stress-driven 3D-IC placement with TSV keep-out zone and regularity study, in: International Conference on Computer-Aided Design (ICCAD), San Jose, CA, Nov 2010 (IEEE/ACM, 2010), p. 669Google Scholar
  2. 2.
    P. Bayat, D. Vogel, R.D. Rodriguez, E. Sheremet, D.R.T. Zahn, S. Rzepka, B. Michel, Thermo-mechanical characterization of copper through-silicon vias (Cu-TSVs) using micro-Raman spectroscopy and atomic force microscopy. Microelectron Eng. 137, 101–104 (2015)CrossRefGoogle Scholar
  3. 3.
    R. Becker, J.F. Butler, H. Hu, L.A. Lalli, Analysis of an aluminum single crystal with unstable initial orientation (0 0 1) [1 1 0] in channel die compression. Metall. Trans. A 22, 45–48 (1991)Google Scholar
  4. 4.
    J. Berry, N. Provatas, J. Rottler, C.W. Sinclair, Defect stability in phase-field crystal models: stacking faults and partial dislocations. Phys. Rev. B 86, 224112 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Berry, N. Provatas, J. Rottler, C.W. Sinclair, Phase field crystal modeling as a unified atomistic approach to defect dynamics. Phys. Rev. B 89, 214117 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Berry, J. Rottler, C.W. Sinclair, N. Provatas, Atomistic study of diffusion-mediated plasticity and creep using phase field crystal methods. Phys. Rev. B 92, 134103 (2015)CrossRefGoogle Scholar
  7. 7.
    A.S. Budiman, H.-A.-S. Shin, B.-J. Kim, B.-J. Kim, S.-H. Hwang, H.-Y. Son, M.-S. Suh, Q.-H. Chung, K.-Y. Byun, N. Tamura, M. Kunz, Y.-C. Joo, Measurement of stresses in Cu and Si around through-silicon via by synchrotron X-ray microdiffraction for 3-dimensional integrated circuits. Microelectron Reliab. 52, 530–533 (2012)CrossRefGoogle Scholar
  8. 8.
    H.J. Bunge, R.A. Schwarzer, Orientation stereology—a new branch in texture research. Adv. Eng. Mater. 3, 25–39 (2001)CrossRefGoogle Scholar
  9. 9.
    H.J. Bunge, Texture Analysis in Materials Science—Mathematical Methods (Butterworth & Co, London, 1982)Google Scholar
  10. 10.
    D. Cereceda, M. Diehl, F. Roters, D. Raabe, J.M. Perlado, J. Marian, Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations. Int. J. Plasticity 78, 242–265 (2016)CrossRefGoogle Scholar
  11. 11.
    L.Q. Chen, Phase-field models for microstructure evolution. Ann. Rev. Mater. Res. 32, 113–140 (2002)CrossRefGoogle Scholar
  12. 12.
    E.J. Cheng, Y.L. Shen, Thermal expansion behavior of through-silicon-via structures in three-dimensional microelectronic packaging. Microelectron Reliab. 52, 534–540 (2012)CrossRefGoogle Scholar
  13. 13.
    H.-J. Choi, S.-M. Choi, M.-S. Yeo, S.-D. Cho, D.-C. Baek, J. Park, An experimental study on the TSV reliability: electromigration (EM) and time dependant dielectric breakdown (TDDB). in: IITC: IEEE International Interconnect Technology Conference, San Jose, CA, June 2012 (2012)Google Scholar
  14. 14.
    J. De Messemaeker, O.V. Pereira, B. Vandevelde, H. Philipsen, I. De Wolf, E. Beyne, K. Croes, Impact of post-plating anneal and through-silicon via dimensions on Cu pumping, in: Electronic Components & Technology Conference (IEEE, 2013), p. 586Google Scholar
  15. 15.
    J. De Messemaeker, O.V. Pereira, H. Philipsen, E. Beyne, I. De Wolf, T. Van der Donck, K. Croes, Correlation between Cu microstructure and TSV Cu pumping, in: Electronic Components & Technology Conference (IEEE, 2014), Piscataway, New Jersey, US. p. 613Google Scholar
  16. 16.
    I. De Wolf, K. Croes, O. Varela Pedreira, R. Labie, A. Redolfi, M. Van De Peer, K. Vanstreels, C. Okoro, B. Vandevelde, E. Beyne, Cu pumping in TSVs: effect of pre-CMP thermal budget. Microelectron Reliab. 51, 1856–1859 (2011)CrossRefGoogle Scholar
  17. 17.
    I. De Wolf, V. Simons, V. Cherman, R. Labie, B. Vandevelde, E. Beyne, In-depth Raman spectroscopy analysis of various parameters affecting the mechanical stress near the surface and bulk of Cu-TSVs, in: Electronic Components & Technology Conference (IEEE, 2012), p. 331Google Scholar
  18. 18.
    I. Dutta, P. Kumar, M.S. Bakir, Interface-related reliability challenges in 3-D interconnect systems with through-silicon vias. JOM 63:70–77 (2011)CrossRefGoogle Scholar
  19. 19.
    K.E. Elder, M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70, 051605 (2004)CrossRefGoogle Scholar
  20. 20.
    K.R. Elder, M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70, 051605 (2004)CrossRefGoogle Scholar
  21. 21.
    K.R. Elder, M. Katakowski, M. Haataja, M. Grant, Modeling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2002)CrossRefGoogle Scholar
  22. 22.
    K.R. Elder, N. Provatas, J. Berry, P. Stefanovic, M. Grant, Phase-field crystal modeling and classical density functional theory of freezing. Phys. Rev. B 75, 064107 (2007)CrossRefGoogle Scholar
  23. 23.
    M. Faheem, R.R. Giridharan, Y. Liang, P. van Der Heide, Micro-XRD characterization of a single copper filled through-silicon via. Mater. Lett. 161, 391–394 (2015)CrossRefGoogle Scholar
  24. 24.
    X. Feng, T. Huang, M. Li, The influence of annealing on characteristics of copper in TSV. ECS J. Solid State Sci. Technol. 4, P451–P455 (2015)CrossRefGoogle Scholar
  25. 25.
    T. Frank, S. Moreau, C. Chappaz, L. Arnaud, P. Leduc, A. Thuaire, L. Anghel, Electromigration behavior of 3D-IC TSV interconnects, in: Electronic Components & Technology Conference (IEEE, 2012), p. 326Google Scholar
  26. 26.
    T. Frank, S. Moreau, C. Chappaz, P. Leduc, L. Arnaud, A. Thuaire, E. Chery, F. Lorut, L. Anghel, G. Poupon, Reliability of TSV interconnects: electromigration, thermal cycling, and impact on above metal level dielectric. Microelectron Reliab. 53, 17–29 (2013)CrossRefGoogle Scholar
  27. 27.
    K.J. Ganesh, A.D. Darbal, S. Rajasekhara, G.S. Rohrer, K. Barmak, P.J. Ferreira, Effect of downscaling nano-copper interconnects on the microstructure revealed by high resolution TEM-orientation-mapping. Nanotechnology 23, 135702 (2012)CrossRefGoogle Scholar
  28. 28.
    L. Granasy, F. Podmaniczky, G.I. Toth, G. Tegze, T. Pusztai, Heterogeneous nucleation of/on nanoparticles: a density functional study using the phase-field crystal model. Chem. Soc. Rev. 43, 2159–2173 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Greenwood, N. Provatas, J. Rottler, Free energy functionals for efficient phase field crystal modeling of structural phase transformations. Phys. Rev. Lett. 105, 045702 (2010)CrossRefGoogle Scholar
  30. 30.
    M. Greenwood, N. Ofori-Opoku, J. Rottler, N. Provatas, Modeling structural transformations in binary alloys with phase field crystals. Phys. Rev. B 84, 064104 (2011)CrossRefGoogle Scholar
  31. 31.
    J.M.E. Harper, C. Cabral Jr., P.C. Andricacos, L. Gignac, I.C. Noyan, K.P. Rodbell, C.K. Hu, Mechanisms for microstructure evolution in electroplated copper thin films near room temperature. J. Appl. Phys. 86, 2516–2525 (1999)CrossRefGoogle Scholar
  32. 32.
    S.V. Harren, R.J. Asaro, Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model. J. Mech. Phys. Solids 37, 191–232 (1989)CrossRefzbMATHGoogle Scholar
  33. 33.
    S.V. Harren, H.E. Deve, R.J. Asaro, Shear band formation in plane strain compression. Acta Metall 36, 2435–2480 (1988)CrossRefGoogle Scholar
  34. 34.
    A. Heryanto, W.N. Putra, A. Trigg, S. Gao, W.S. Kwon, F.X. Che, X.F. Ang, J. Wei, R.I. Made, C.L. Gan, K.L. Pey, Effect of copper TSV annealing on via protrusion for TSV Wafer Fabrication. J. Electron Mater. 41, 2533–2542 (2012)CrossRefGoogle Scholar
  35. 35.
    P.S. Ho, S.K. Ryu, K.H. Lu, Q. Zhao, J. Im, R. Huang, Reliability challenges for 3D interconnects: A material and design perspective. Presentation at the 3D Sematech Workshop, Burlingame, 17 March 2011 (2011)Google Scholar
  36. 36.
    T. Hrncir, J. Dluhos, L. Hladik, E. Moyal, Advances in FIB-SEM analysis of TSV and solder bumps—approaching higher precision, throughput and comprehensiveness, in: ISTFA 2014: Proceedings of the 40th International Symposium for Testing and Failure Analysis, Houston, TX, November 2014 (2014)Google Scholar
  37. 37.
    S.-H. Hwang, B.-J. Kim, H.-Y. Lee, Y.-C. Joo, Electrical and mechanical properties of through-silicon vias and bonding layers in stacked wafers for 3D integrated circuits. J. Electron Mater. 41, 232–240 (2012)CrossRefGoogle Scholar
  38. 38.
    T. Jiang, S.-K. Ryu, Q. Zhao, J. Im, R. Huang, P.S. Ho, Measurement and analysis of thermal stresses in 3D integrated structures containing through-silicon-vias. Microelectron Reliab. 53, 53–62 (2013)CrossRefGoogle Scholar
  39. 39.
    T. Jiang, S.K. Ryu, J. Im, H.-Y. Son, N.-S. Kim, R. Huang, P.S. Ho, Impact of material and microstructure on thermal stresses and reliability of through-silicon via (TSV) structures, in: IITC: IEEE International Interconnect Technology Conference, Kyoto, June 2013 (2013)Google Scholar
  40. 40.
    T. Jiang, C. Wu, J. Im, R. Huang, P.S. Ho, Effect of microstructure on via extrusion profile and reliability implication for copper through-silicon vias (TSVs) structures, in: IITC/AMC: International Interconnect Technology Conference/Advanced Metallization Conference, San Jose, CA, May 2014 (IEEE, 2014), p. 377Google Scholar
  41. 41.
    S.R. Kalidindi, Incorporation of deformation twinning in crystal plasticity models. J. Mech. Phys. Solids 46, 267–290 (1998)CrossRefzbMATHGoogle Scholar
  42. 42.
    S.R. Kalidindi, M. De Graef, Materials data science: current status and future outlook. Annu. Rev. Mater. Res. 45, 171–193 (2015)CrossRefGoogle Scholar
  43. 43.
    L.W. Kong, J.R. LIoyd, K.B. Yeap, E. Zschech, A. Rudack, M. Liehr, A. Diebold, Applying X-ray microscopy and finite element modeling to identify the mechanism of stress-assisted void growth in through-silicon vias. J. Appl. Phys. 110, 053502 (2011)CrossRefGoogle Scholar
  44. 44.
    Krause, M., et al., Characterization and failure analysis of TSV interconnects: from non-destructive defect localization to material analysis with nanometer resolution, in: Electronic Components & Technology Conference (IEEE, 2011), p. 1452Google Scholar
  45. 45.
    P. Kumar, I. Dutta, Influence of electric current on diffusionally accommodated sliding at hetero-interfaces. Acta Mater 59, 2096–2108 (2011)CrossRefGoogle Scholar
  46. 46.
    P. Kumar, I. Dutta, Effect of substrate surface on electromigration-induced sliding at hetero-interfaces. J. Phys. D 46, 155303 (2013)CrossRefGoogle Scholar
  47. 47.
    P. Kumar, I. Dutta, M.S. Bakir, Interfacial effects during thermal cycling of Cu-filled through-silicon vias (TSV). J. Electron Mater. 41, 322–335 (2012)CrossRefGoogle Scholar
  48. 48.
    L.E. Levine, C. Okoro, R. Xu Full elastic strain and stress tensor measurements from individual dislocation cells in copper through-Si vias. IUCrJ 2, 635–642 (2015)Google Scholar
  49. 49.
    X. Liu, Q. Chen, V. Sundaram, M. Simmons-Matthews, K.P. Wachtler, R.R. Tummla, S.K. Sitaraman, Thermo-mechanical behavior of through silicon vias in a 3D integrated package with inter-chip microbumps, in: Electronic Components & Technology Conference (IEEE, 2011), p. 1190Google Scholar
  50. 50.
    K.H. Lu, S.-K. Ryu, Q. Zhao, K. Hummler, J. Im, R. Huang, P.S. Ho, Temperature-dependent thermal stress determination for through-silicon-vias (TSVs) by combining bending beam technique with finite element analysis, in: Electronic Components & Technology Conference (IEEE, 2011), p. 1475Google Scholar
  51. 51.
    L.B. Mauer, J. Taddei, R. Yousself, Wet silicon etch process for TSV reveal, in: Electronic Components & Technology Conference (IEEE, 2014), Piscataway, New Jersey, US. p. 878Google Scholar
  52. 52.
    C. McDonough, B. Backes, W. Wang, R. Caramto, R.E. Gree, Thermal and spatial dependence of TSV-induced stress in Si, in: Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM), Dresden, May 2011 (2011)Google Scholar
  53. 53.
    L. Meinshausen, M. Liu, T.K. Lee, I. Dutta, L. Li, Reliability implications of thermo-mechanically and electrically induced interfacial sliding of through-silicon vias in 3D packages, in: ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, San Francisco, CA, July 2015 (2015)Google Scholar
  54. 54.
    H.D. Merchant, Thermal response of electrodeposited copper. J. Electron Mater. 24, 919–925 (1995)CrossRefGoogle Scholar
  55. 55.
    N. Nabiollahi, N. Moelans, M. Gonzalez, J. De Messemaeker, C.J. Wilson, K. Croes, E. Beyne, I. De Wolf (2015) Microstructure simulation of grain growth in Cu through silicon vias using phase-field modeling. Microelectron Reliab. 55, 765–770CrossRefGoogle Scholar
  56. 56.
    National Science and Technology Council, Materials genome initiative for global competitiveness. National Science and Technology Council, Washington, DC (2011), Accessed 21 June 2016
  57. 57.
    W.D.Nix, J.R. Greer, G. Feng, E.T. Lilleodden, Deformation at the nanometer and micrometer length scales: effects of strain gradients and dislocation starvation. Thin Solid Films 515, 3152–3157 (2007)Google Scholar
  58. 58.
    N. Ofori-Opoku, V. Fallah, M. Greenwood, S. Esmaeili, N. Provatas, Multicomponent phase-field crystal model for structural transformations in metal alloys. Phys. Rev. B 87, 134105 (2013)CrossRefGoogle Scholar
  59. 59.
    C. Okoro, K. Vanstreels, R. Labie, O. Luhn, B. Vandevelde, B. Verlinden, D. Vandepitte, Influence of annealing condition on the mechanical and microstructural behavior of electroplated Cu-TSV. J. Micromech. Microeng. 20, 045032 (2010)CrossRefGoogle Scholar
  60. 60.
    C. Okoro, C. Huyghebaert, J. Van Olmen, R. Labie, K. Lambrinou, B. Vandevelde, E. Beyne, D. Vandepitte, Elimination of the axial deformation problem of CuTSV in 3D integration. AIP Conf. Proc. 1300, 214 (2010)CrossRefGoogle Scholar
  61. 61.
    C. Okoro, R. Labie, K. Vanstreels, A. Franquet, M. Gonzalez, B. Vandevelde, E. Beyne, D. Vandepitte, B. Verlinden, Impact of the electrodeposition chemistry used for TSV filling on the microstructural and thermo-mechanical response of Cu. J. Mater. Sci. 46, 3868–3882 (2011)CrossRefGoogle Scholar
  62. 62.
    C. Okoro, L.E. Levine, R. Xu, K. Hummler, Y. Obeng, X-ray micro-beam diffraction measurement of the effect of thermal cycling on stress in Cu TSV: a comparative study, in: Electronic Components & Technology Conference (IEEE, 2014), p. 1648Google Scholar
  63. 63.
    C. Okoro, J.W. La, F. Golshany, K. Hummler, Y.S. Obeng, A detailed failure analysis examination of the effect of thermal cycling on Cu TSV reliability. IEEE Trans. Electron Dev. 61, 15–22 (2014)CrossRefGoogle Scholar
  64. 64.
    C. Okoro, L.E. Levine, R. Xu, Y.S. Obeng, Experimentally, how does Cu TSV diameter influence its stress state? in: Electronic Components & Technology Conference (IEEE, 2015), p. 54Google Scholar
  65. 65.
    K.A. Peterson, I. Dutta, M.W. Chen, Diffusionally accommodated interfacial sliding in metal-silicon systems. Acta Mater. 51, 2831–2846 (2003)CrossRefGoogle Scholar
  66. 66.
    D. Peirce, R.J. Asaro, A. Needleman, An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall. 30, 1087–1119 (1982)CrossRefGoogle Scholar
  67. 67.
    N. Provatas, K. Elder, Phase-Field Methods in Material Science and Engineering (Wiley-VCH, Weinheim, 2010)CrossRefGoogle Scholar
  68. 68.
    D. Raabe, D. Ma, F. Roters, Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: a crystal plasticity finite element study. Acta Mater. 55, 4567–4583 (2007)CrossRefGoogle Scholar
  69. 69.
    R. Radojcic, M. Nowak, M. Nakamoto, TechTuning: stress management for 3D through-silicon-via stacking technologies. AIP Conf. Proc. 1378, 5–20 (2011)CrossRefGoogle Scholar
  70. 70.
    F. Roters, Advanced material models for the crystal plasticity finite element method: development of a general CPFEM framework. Habilitation Thesis, RWTH Aachen University (2011)Google Scholar
  71. 71.
    F. Roters, P. Eisenlohr, C. Kords, D.D. Tjahjanto, M. Diehl, D. Raabe, DAMASK: the Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM 3, 3–10 (2012)CrossRefGoogle Scholar
  72. 72.
    S.K. Ryu, T. Jiang, K.H. Lu, J. Im, H.-Y. Son, K.-Y. Byun, R. Huang, P.S. Ho, Characterization of thermal stresses in through-silicon vias for three-dimensional interconnects by bending beam technique. Appl. Phys. Lett. 100, 041901 (2012)CrossRefGoogle Scholar
  73. 73.
    M. Seymour, F. Sanches, K. Elder, N. Provatas, Phase-field crystal approach for modeling the role of microstructure in multiferroic composite materials. Phys. Rev. B 92, 184109 (2015)CrossRefGoogle Scholar
  74. 74.
    M. Seymour, N. Provatas, Structural phase field crystal approach for modeling graphene and other two-dimensional structures. Phys. Rev. B 93, 035447 (2016)CrossRefGoogle Scholar
  75. 75.
    H.-A-S. Shin, B.-J. Kim, J.-H. Kim, S.-H. Hwang, A.S. Budiman, H.-Y. Son, K.-Y. Byun, N Tamura, M Kunz, D.-I. Kim, Y.-C. Joo, Microstructure evolution and defect formation in Cu through-silicon vias (TSVs) during thermal annealing. J. Electron Mater. 41, 712–719 (2012)Google Scholar
  76. 76.
    D. Smith, S. Singh, Y. Ramnath, M. Rabie, D. Zhang, L. England, TSV residual Cu step height analysis by white light interferometry for 3D integration, in: Electronic Components & Technology Conference (IEEE, 2015), Piscataway, New Jersey, US. p. 578Google Scholar
  77. 77.
    M. Song, K.R. Mundboth, J.A. Szpunar, L. Chen, R. Feng, Characterization of local strain/stress in copper through-silicon via structures using synchrotron X-ray microdiffraction, electron backscattered diffraction and nonlinear thermomechanical model. J. Micromech. Microeng. 25, 085002 (2015)CrossRefGoogle Scholar
  78. 78.
    P. Stefanovic, M. Haataja, N. Provatas, Phase field crystal study of deformation and plasticity in nanocrystalline materials. Phys. Rev. E 80, 046107 (2009)CrossRefGoogle Scholar
  79. 79.
    G.G. Stoney, The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. A 82, 172–175 (1909)CrossRefGoogle Scholar
  80. 80.
    Y.C. Tan, C.M. Tan, X.W. Zhang, T.C. Chai, D.Q. Yu, Electromigration performance of through silicon via (TSV) – a modeling approach. Microelectron Reliab. 50, 1336–1340 (2010)CrossRefGoogle Scholar
  81. 81.
    G.I. Taylor, The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. R. Soc. Lond. A 145, 362–387 (1934)CrossRefzbMATHGoogle Scholar
  82. 82.
    G.I. Taylor, The mechanism of plastic deformation of crystals. Part II. Comparison with observations. Proc. R. Soc. Lond. A 145, 388–404 (1934)CrossRefzbMATHGoogle Scholar
  83. 83.
    T. Tian, R. Morusupalli, H. Shin, H.-Y. Son, K.-Y. Byun, Y.-C. Joo, R. Caramto, L. Smith, Y.-L. Shen, M. Kunz, N. Tamura, A.S. Budiman, On the mechanical stresses of Cu through-silicon via (TSV) samples fabricated by SK Hynix vs. SEMATECH Enabling robust and reliable 3-D interconnect/integrated circuit (IC) technology. Procedia Eng 139, 101–111 (2016)Google Scholar
  84. 84.
    A.D. Trigg, L.H. Yu, C.K. Cheng, R. Kumar, D.L. Kwong, T. Ueda, T. Ishigaki, K. Kang, W.S. Yoo, Three dimensional stress mapping of silicon surrounded by copper filled through silicon vias using polychromator-based multi-wavelength micro Raman spectroscopy. Appl. Phys. Exp. 3, 086601 (2010)CrossRefGoogle Scholar
  85. 85.
    V.H. Vartanian, R.A. Allen, L. Smith, K. Hummler, S. Olson, B.C. Sapp, Metrology needs for through-silicon via fabrication. J. Micro/Nanolith. MEMS MOEMS 13, 011206 (2014)CrossRefGoogle Scholar
  86. 86.
    H. Wang, P. Cheng, H. Wang, R. Liu, L. Sun, Q. Rao, Z. Wang, T. Gu, G. Ding, Effect of current density on microstructure and mechanical property of Cu micro-cylinders electrodeposited in through silicon vias. Mater. Charact. 109, 164–172 (2015)CrossRefGoogle Scholar
  87. 87.
    B. Wu, A. Kumar, S. Pamarthy, High aspect ratio silicon etch: a review. J. Appl. Phys. 108, 051101 (2010)CrossRefGoogle Scholar
  88. 88.
    K.A. Wu, M. Plapp, P.W. Voorhees, Controlling crystal symmetries in phase-field crystal models. J. Phys.: Condens. Matter 22, 364102 (2010)Google Scholar
  89. 89.
    Z. Wu, Z. Huang, Y. Ma, H. Xiong, P.P. Conway, Effects of the microstructure of copper through-silicon vias on their thermally induced linear elastic mechanical behavior. Electron Mater. Lett. 10, 281–292 (2014)CrossRefGoogle Scholar
  90. 90.
    H. Xiong, Z. Huang, P. Conway, A method for quantification of the effects of size and geometry on the microstructure of miniature interconnects. J. Electron Mater. 43, 618–629 (2014)CrossRefGoogle Scholar
  91. 91.
    Q. Zhao, J. Im, R. Huang, P.S. Ho, Extension of micro-Raman spectroscopy for full-component stress characterization of TSV structures, in: Electronic Components & Technology Conference (IEEE, 2013), Piscataway, New Jersey, US. p. 397Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Praveen Kumar
    • 1
  • Indranath Dutta
    • 2
  • Zhiheng Huang
    • 3
    Email author
  • Paul Conway
    • 4
  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  3. 3.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  4. 4.The Wolfson School of Mechanical, Electrical and Manufacturing EngineeringLoughborough UniversityLoughboroughUK

Personalised recommendations