Interconnect Quality and Reliability of 3D Packaging

  • Yaodong Wang
  • Yingxia Liu
  • Menglu Li
  • K. N. Tu
  • Luhua XuEmail author
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 57)


Quality and reliability aspects of 3D IC and packages are discussed in this chapter. The main focuses are interconnects-related quality and reliability issues. For the 3D packages, interconnects may include microbump, TSV, UBM, copper traces, etc. We compare them to the quality and reliability concerns observed in the existing interconnects, as well as the methodology to predict the field performances. We shall cover microstructure changes and failures driven by mechanical stressing, electromigration (EM), and thermomigration (TM). This way we can see how the transition, for example, from C-4 joints to microbumps may affect the failure modes. On mechanical stressing, we emphasize the brittle nature as well as microvoid formation, especially Kirkendall void formation in microbumps. A string of voids in a brittle material can easily lead to fracture damage. The interest in mechanical failures is because for mobile and wearable devices, the frequency of impact and dropping to the ground is high. On EM and TM in microbumps and TSV, we emphasize the enhanced failure mode due to Joule heating.


Solder Joint Joule Heating Solder Bump Back Stress Under Bump Metallurgy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The editors would like to thank Indranath Dutta from Washington State University and Tae-Kyu Lee from Portland State University for their critical review of this chapter.


  1. 1.
    K.N. Tu, Reliability challenges in 3D IC packaging technology. Microelectron. Reliab. 51(3), 517–523 (2011)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, I.M. De Rosa, K.N. Tu, Size effect on ductile-to-brittle transition in Cu-solder-Cu micro-joints. In 2015 Proceedings of 65th Electronic components and Technology Conference, San Diego, CA, 2015, pp. 632–639Google Scholar
  3. 3.
    S.F. Choudhury, L. Ladani, Grain growth orientation and anisotropy in Cu6Sn5 intermetallic: nanoindentation and electron backscatter diffraction analysis. J. Electron. Mater. 43(4), 996–1004 (2014)CrossRefGoogle Scholar
  4. 4.
    K. Sakuma, K. Sueoka, S. Kohara, K. Matsumoto, H. Noma, T. Aoki, Y. Oyama, H. Nishiwaki, P.S. Andry, C.K. Tsang, J.U. Knickerbocker, Y. Orii, IMC bonding for 3D interconnection. In 2010 Proceedings 60th Electronic Components and Technology Conference, Las Vegas, NV, 2010, pp. 864–871Google Scholar
  5. 5.
    K. Sakuma, K. Tunga, B. Webb, An enhanced thermo-compression bonding process to address warpage in 3D integration of large die on organic substrates. In Proceedings of Electronic Components and Technology Conference, San Diego, CA, 2015, pp. 318–324Google Scholar
  6. 6.
    L. Li, P. Su, J. Xue, M. Brillhart, J. Lau, P.J. Tzeng, C.K. Lee, C.J. Zhan, M.J. Dai, H.C. Chien, S.T. Wu, Addressing bandwidth challenges in next generation high performance network systems with 3D IC integration. In Proceedings of Electronic Components and Technology Conference, San Diego, CA, 2012, pp. 1040–1046Google Scholar
  7. 7.
    C.C. Lee, P.J. Wang, J.S. Kim, Are intermetallics in solder joints really brittle? In Proceedings of Electronic Components and Technology Conference, Reno, NV, 2007, pp. 648–652Google Scholar
  8. 8.
    P.F. Yang, Y.S. Lai, S.R. Jian, J. Chen, R.S. Chen, Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples. Mater. Sci. Eng. A 485(1–2), 305–310 (2008)CrossRefGoogle Scholar
  9. 9.
    L. Jiang, N. Chawla, Mechanical properties of Cu6Sn5 intermetallic by micropillar compression testing. Scr. Mater. 63(5), 480–483 (2010)CrossRefGoogle Scholar
  10. 10.
    R.R. Chromik, R.P. Vinci, S.L. Allen, M.R. Notis, Nanoindentation measurements on Cu–Sn and Ag–Sn intermetallics formed in Pb-free solder joints. J. Mater. Res. 18(09), 2251–2261 (2003)CrossRefGoogle Scholar
  11. 11.
    R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51(17), 5159–5172 (2003)CrossRefGoogle Scholar
  12. 12.
    X. Deng, N. Chawla, K.K. Chawla, M. Koopman, Deformation behavior of (Cu, Ag)-Sn intermetallics by nanoindentation. Acta Mater. 52(14), 4291–4303 (2004)CrossRefGoogle Scholar
  13. 13.
    G. Ghosh, Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging. J. Mater. Res. 19(5), 1439–1454 (2004)CrossRefGoogle Scholar
  14. 14.
    Granta Design Ltd, CES 2016 Selector materials selection software (2016)Google Scholar
  15. 15.
    R.A. Mirshams, C.H. Xiao, S.H. Whang, W.M. Yin, R-curve characterization of the fracture toughness of nanocrystalline nickel thin sheets. Mater. Sci. Eng. A 315(1–2), 21–27 (2001)CrossRefGoogle Scholar
  16. 16.
    T.-T. Luu, N. Hoivik, K. Wang, K.E. Aasmundtveit, A.-S.B. Vardøy, High-temperature mechanical integrity of Cu-Sn SLID wafer-level bonds. Metall. Mater. Trans. A 46(11), 5266–5274 (2015)CrossRefGoogle Scholar
  17. 17.
    H.Y. Chuang, T.L. Yang, M.S. Kuo, Y.J. Chen, J.J. Yu, C.C. Li, C.R. Kao, Critical concerns in soldering reactions arising from space confinement in 3-D IC packages. IEEE Trans. Dev. Mater. Reliab. 12(2), 233–240 (2012)CrossRefGoogle Scholar
  18. 18.
    K. Tanida, M. Umemoto, N. Tanaka, Y. Tomita, K. Takahashi, Micro Cu bump interconnection on 3D chip stacking technology. Jpn. J. Appl. Phys. 43(4B), 2264–2270 (2004)CrossRefGoogle Scholar
  19. 19.
    J.F. Li, P.a. Agyakwa, C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 59(3), 1198–1211 (2011)CrossRefGoogle Scholar
  20. 20.
    S.J. Wang, L.H. Hsu, N.K. Wang, C.E. Ho, EBSD investigation of Cu-Sn IMC microstructural evolution in Cu/Sn-Ag/Cu microbumps during isothermal annealing. J. Electron. Mater. 43(1), 219–228 (2014)CrossRefGoogle Scholar
  21. 21.
    K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, K.N. Tu, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. J. Appl. Phys. 97(2), 24508 (2005)Google Scholar
  22. 22.
    J. Yu, J.Y. Kim, Effects of residual S on Kirkendall void formation at Cu/Sn-3.5Ag solder joints. Acta Mater. 56(19), 5514–5523 (2008)CrossRefGoogle Scholar
  23. 23.
    K.-N. Tu, Solder Joint Technology (Springer, New York, 2007)Google Scholar
  24. 24.
    K. Nogita, T. Nishimura, Nickel-stabilized hexagonal (Cu, Ni)6Sn5 in Sn–Cu–Ni lead-free solder alloys. Scr. Mater. 59(2), 191–194 (2008)CrossRefGoogle Scholar
  25. 25.
    H. Zhang, E. Perfecto, V.L. Calero-DdelC, F. Pompeo, An effective method for full solder intermetallic compound formation and Kirkendall void control in Sn-base solder micro-joints. In 2015 I.E. 65th Electronic Components and Technology Conference, San Diego, CA, 2015, pp. 1695–1700Google Scholar
  26. 26.
    W.-L. Chiu, C.-M. Liu, Y.-S. Haung, C. Chen, Formation of nearly void-free Cu3Sn intermetallic joints using nanotwinned Cu metallization., Appl. Phys. Lett. 104(17), 171902 (2014)Google Scholar
  27. 27.
    Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D.W. Henderson, E.J. Cotts, N. Dimitrov, Influence of plating parameters and solution chemistry on the voiding propensity at electroplated copper-solder interface: plating in acidic copper solution with and without polyethylene glycol. J. Appl. Electrochem. 38(12), 1695–1705 (2008)CrossRefGoogle Scholar
  28. 28.
    J.H.L. Pang, Effect of intermetallic and Kirkendall voids growth on board level drop Reliability for SnAgCu lead-free BGA solder joint. In 56th Electronic Components and Technology Conference 2006, San Diego, CA, 2006, pp. 275–282Google Scholar
  29. 29.
    Y. Wang, S.-H. Chae, R. Dunne, Y. Takahashi, K. Mawatari, P. Steinmann, T. Bonifield, T. Jiang, J. Im, P.S. Ho, Effect of intermetallic formation on electromigration reliability of TSV-microbump joints in 3D interconnect. In 2012 I.E. 62nd Electronic Components and Technology Conference, San Diego, CA, 2012, pp. 319–325Google Scholar
  30. 30.
    I. Panchenko, K. Croes, I. De Wolf, J. De Messemaeker, E. Beyne, K.J. Wolter, Degradation of Cu6Sn5 intermetallic compound by pore formation in solid-liquid interdiffusion Cu/Sn microbump interconnects. Microelectron. Eng. 117, 26–34 (2014)CrossRefGoogle Scholar
  31. 31.
    L. Mo, Z. Chen, F. Wu, C. Liu, Microstructural and mechanical analysis on Cu–Sn intermetallic micro-joints under isothermal condition. Intermetallics 66, 13–21 (2015)CrossRefGoogle Scholar
  32. 32.
    C. Chen, D. Yu, K. Chen, Vertical interconnects of microbumps in 3D integration. MRS Bull. 40(March), 257–263 (2015)Google Scholar
  33. 33.
    Y. Wang, Mechanical reliabilities of porous type Cu/Cu3Sn/Cu micro-joints. Unpublished Manuscript (2016)Google Scholar
  34. 34.
    J.O. Suh, K.N. Tu, N. Tamura, Dramatic morphological change of scallop-type Cu6Sn5 formed on (001) single crystal copper in reaction between molten SnPb solder and Cu. Appl. Phys. Lett. 91(5), 051907 (2007)Google Scholar
  35. 35.
    J.O. Suh, K.N. Tu, N. Tamura, Preferred orientation relationship between Cu6Sn5 scallop-type grains and Cu substrate in reactions between molten Sn-based solders and Cu. J. Appl. Phys. 102(6), 063511 (2007)Google Scholar
  36. 36.
    Y. Tian, R. Zhang, C. Hang, L. Niu, C. Wang, Relationship between morphologies and orientations of Cu6Sn5 grains in Sn3.0Ag0.5Cu solder joints on different Cu pads. Mater. Charact. 88(100), 58–68 (2014)CrossRefGoogle Scholar
  37. 37.
    H.F. Zou, H.J. Yang, Z.F. Zhang, Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals. Acta Mater. 56, 2649–2662 (2008)CrossRefGoogle Scholar
  38. 38.
    M. Li, M. Yang, J. Kim, Textured growth of Cu6Sn5 grains formed at a Sn3.5Ag/Cu interface. Mater. Lett. 66(1), 135–137 (2012)CrossRefGoogle Scholar
  39. 39.
    G. Hariharan, R. Chaware, I. Singh, J. Lin, L. Yip, K. Ng, S.Y. Pai, A comprehensive reliability study on a CoWoS 3D IC package. In 2015 I.E. 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, 2015, pp. 573–577Google Scholar
  40. 40.
    Y.T. Chen, Chemical effect on diffusion in intermetallic compounds. Ph.D. thesis, University of California, Los Angeles, 2016Google Scholar
  41. 41.
    C.C. Lee, T.-F. Yang, C.-S. Wu, K.-S. Kao, R.-C. Cheng, T.-H. Chen, Reliability estimation and failure mode prediction for 3D chip stacking package with the application of wafer-level underfill. Microelectron. Eng. 107, 107–113 (2013)CrossRefGoogle Scholar
  42. 42.
    H.H. Hsu, S.-Y. Huang, T.-C. Chang, A.T. Wu, Nucleation and propagation of voids in microbumps for 3 dimensional integrated circuits. Appl. Phys. Lett. 99(25), 251913 (2011)Google Scholar
  43. 43.
    H.B. Huntington, A.R. Grone, Current-induced marker motion in gold wires. J. Phys. Chem. Solids 20(1), 76–87 (1961)CrossRefGoogle Scholar
  44. 44.
    I.A. Blech, Electromigration in thin aluminum films on titanium nitride. J. Appl. Phys. 47(4), 1203–1208 (1976)CrossRefGoogle Scholar
  45. 45.
    C.K. Hu, K.P. Rodbell, T.D. Sullivan, K.Y. Lee, D.P. Bouldin, Electromigration and stress-induced voiding in fine Al and Al-alloy thin-film lines. IBM J. Res. Dev. 39(4), 465–497 (1995)CrossRefGoogle Scholar
  46. 46.
    C.K. Hu, M.B. Small, P.S. Ho, Electromigration in Al(Cu) two-level structures: effect of Cu and kinetics of damage formation. J. Appl. Phys. 74(2), 969–978 (1993)CrossRefGoogle Scholar
  47. 47.
    C.K. Hu, P.S. Ho, M.B. Small, Electromigration in two-level interconnect structures with Al alloy lines and W studs. J. Appl. Phys. 72(1), 291–293 (1992)CrossRefGoogle Scholar
  48. 48.
    E.T. Ogawa, K.D. Lee, V.A. Blaschke, P.S. Ho, Electromigration reliability issues in dual-damascene Cu interconnections. IEEE Trans. Reliab. 51(4), 403–419 (2002)CrossRefGoogle Scholar
  49. 49.
    Y. Morand, Copper metallization for advanced IC: requirements and technological solutions. Microelectron. Eng. 50(1–4), 391–401 (2000)CrossRefGoogle Scholar
  50. 50.
    H. Helneder, H. Korner, A. Mitchell, M. Schwerd, U. Seidel, Comparison of copper damascene and aluminum RIE metallization in BICMOS technology. Microelectron. Eng. 55(1–4), 257–268 (2001)CrossRefGoogle Scholar
  51. 51.
    C.K. Hu, R. Rosenberg, H. Rathore, D. Nguyen, B. Agarwala, Scaling effect in electromigration of on-chip Cu wiring. Interconnect technology 1999. In IEEE International Conference, San Francisco, CA, 1999, pp. 267–269Google Scholar
  52. 52.
    E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, H. Balkan, Current-crowding-induced electromigration failure in flip chip solder joints. Appl. Phys. Lett. 80(4), 580–582 (2002)CrossRefGoogle Scholar
  53. 53.
    L. Zhang, S. Ou, J. Huang, K.N. Tu, S. Gee, L. Nguyen, Effect of current crowding on void propagation at the interface between intermetallic compound and solder in flip chip solder joints. Appl. Phys. Lett. 88(1), 012106 (2006)Google Scholar
  54. 54.
    K.N. Tu, C.C. Yeh, C.Y. Liu, C. Chen, Effect of current crowding on vacancy diffusion and void formation in electromigration, Appl. Phys. Lett. 76(8), 988 (2000)Google Scholar
  55. 55.
    F.Y. Ouyang, H. Hsu, Y.P. Su, T.C. Chang, Electromigration induced failure on lead-free micro bumps in three-dimensional integrated circuits packaging. J. Appl. Phys. 112(2), 023505 (2012)Google Scholar
  56. 56.
    R. Labie, P. Limaye, K. Lee, C. Berry, E. Beyne, I. De Wolf. Reliability testing of Cu-Sn intermetallic micro-bump interconnections for 3D-device stacking. In 3rd Electronic System Integration Technology Conference (ESTC), Berlin, 2010, pp. 1–5Google Scholar
  57. 57.
    R. Labie, W. Ruythooren, K. Baert, E. Beyne, B. Swinnen, Resistance to electromigration of purely intermetallic micro-bump interconnections for 3D-device stacking. In 2008 I.E. International Interconnect Technology Conference (IITC), Burlingame, CA, 2008, pp. 19–21Google Scholar
  58. 58.
    Y.M. Lin, C.-J. Zhan, J.-Y. Juang, J.H. Lau, T.-H. Chen, R. Lo, M. Kao, T. Tian, K.-N. Tu, Electromigration in Ni/Sn intermetallic micro bump joint for 3D IC chip stacking. In 2011 I.E. 61st Electronic Components and Technology Conference, Lake Buena Vista, FL, 32011, pp. 351–357Google Scholar
  59. 59.
    C.C. Wei, C.H. Yu, C.H. Tung, R.Y. Huang, C.C. Hsieh, C.C. Chiu, H.Y. Hsiao, Y.W. Chang, C.K. Lin, Y.C. Liang, C. Chen, T.C. Yeh, L.C. Lin, D.C.H. Yu, Comparison of the electromigration behaviors between micro-bumps and C4 solder bumps. In Proceedings Electronic Components and Technology Conference, Lake Buena Vista, FL, 2011, pp. 706–710Google Scholar
  60. 60.
    H. You, Y. Lee, S. Lee, J. Kang, Reliability of 20 μm micro bump interconnects. In 2011 I.E. 61st Electronic Components and Technology Conference (ECTC ), Lake Buena Vista, FL, 2011, pp. 608–611
  61. 61.
    S.Y. Huang, C.J. Zhan, Y.W. Huang, Y.M. Lin, C.W. Fan, S.C. Chung, K.S. Kao, J.Y. Chang, M.L. Wu, T.F. Yang, J.H. Lau, T.H. Chen, Effects of UBM structure/material on the reliability performance of 3D chip stacking with 30 μm-pitch solder micro bump interconnections. In Proceedings Electronic Components and Technology Conference, San Diego, CA, 2012, pp. 1287–1292Google Scholar
  62. 62.
    N. Tanaka, T. Sato, Y. Yamaji, T. Morifuji, M. Umemoto, K. Takahashi, Mechanical effects of copper through-vias in a 3D die-stacked module. In Proceedings of 52nd Electronic Components and Technology Conference 2002, no. 2, pp. 473–479Google Scholar
  63. 63.
    J. Zhang, M.O. Bloomfield, J.Q. Lu, R.J. Gutmann, T.S. Cale, Modeling thermal stresses in 3-D IC interwafer interconnects. IEEE Trans. Semicond. Manuf. 19(4), 437–448 (2006)CrossRefGoogle Scholar
  64. 64.
    K.H. Lu, S.K. Ryu, Q. Zhao, X. Zhang, J. Im, R. Huang, P.S. Ho, Thermal stress induced delamination of through silicon vias in 3-D interconnects. In Proceedings Electronic Components and Technology Conference, Las Vegas, NV, 2010, pp. 40–45Google Scholar
  65. 65.
    J. Pak, M. Pathak, S. K. Lim, and D. Z. Pan, Modeling of electromigration in through-silicon-via based 3D IC. In 2011 I.E. 61st Electronic Components and Technology Conference (ECTC ), Lake Buena Vista, FL, 2011, pp. 1420–1427
  66. 66.
    Z. Chen, Z. Lv, X.F. Wang, Y. Liu, S. Liu, Modeling of electromigration of the through silicon via interconnects. In 2010 11th International Conference on electronic Packaging Technology & High Density Packaging (ICEPT-HDP ), Xi’an, 2010, pp. 1221–1225
  67. 67.
    Y.C. Tan, C.M. Tan, X.W. Zhang, T.C. Chai, D.Q. Yu, Electromigration performance of through silicon via (TSV)—a modeling approach. Microelectron. Reliab. 50(9–11), 1336–1340 (2010)CrossRefGoogle Scholar
  68. 68.
    T. Frank, S. Moreau, C. Chappaz, L. Arnaud, P. Leduc, A. Thuaire, L. Anghel, Electromigration behavior of 3D-IC TSV interconnects. Proc. Electron. Compon. Technol. Conf. 3(1), 326–330 (2012)Google Scholar
  69. 69.
    T. Frank, S. Moreau, C. Chappaz, P. Leduc, L. Arnaud, A. Thuaire, E. Chery, F. Lorut, L. Anghel, G. Poupon, Reliability of TSV interconnects: electromigration, thermal cycling, and impact on above metal level dielectric. Microelectron. Reliab. 53(1), 17–29 (2013)CrossRefGoogle Scholar
  70. 70.
    S. Moreau, D. Bouchu, Reliability of dual damascene TSV for high density integration: the electromigration issue. IEEE Int. Reliab. Phys. Symp. Proc. 33, 1–5 (2013)Google Scholar
  71. 71.
    H.J. Choi, S.M. Choi, M.S. Yeo, S.D. Cho, D.C. Baek, J. Park, An experimental study on the TSV reliability: electromigration (EM) and time dependant dielectric breakdown (TDDB). In 2012 I.E. International Interconnect Technology Conference, San Jose, CA, 2012, pp. 4–6
  72. 72.
    Y. Liu, M. Li, D.W. Kim, S. Gu, K.N. Tu, Synergistic effect of electromigration and Joule heating on system level weak-link failure in 2.5D integrated circuits. J. Appl. Phys. 118(13),135304 (2015)Google Scholar
  73. 73.
    K. Chen, K. Tu, Guest Editors, Materials challenges in three-dimensional integrated circuits. MRS Bull. 40, 219–222 (2015)CrossRefGoogle Scholar
  74. 74.
    A.T. Huang, A.M. Gusak, K.N. Tu, Y.S. Lai, Thermomigration in SnPb composite flip chip solder joints. Appl. Phys. Lett. 88(14), 1–4 (2006)CrossRefGoogle Scholar
  75. 75.
    A.T. Huang, K.N. Tu, Y.S. Lai, Effect of the combination of electromigration and thermomigration on phase migration and partial melting in flip chip composite SnPb solder joints. J. Appl. Phys. 100(3) (2006)Google Scholar
  76. 76.
    D. Yang, Y.C. Chan, B.Y. Wu, M. Pecht, Electromigration and thermomigration behavior of flip chip solder joints in high current density packages. J. Mater. Res. 23(9), 2333–2339 (2011)CrossRefGoogle Scholar
  77. 77.
    F.Y. Ouyang, K.N. Tu, Y.S. Lai, A.M. Gusak, Effect of entropy production on microstructure change in eutectic SnPb flip chip solder joints by thermomigration. Appl. Phys. Lett. 89(22), 26–29 (2006)CrossRefGoogle Scholar
  78. 78.
    F.Y. Ouyang, C.L. Kao, In situ observation of thermomigration of Sn atoms to the hot end of 96.5Sn-3Ag-0.5Cu flip chip solder joints. J. Appl. Phys. 110(12) (2011)Google Scholar
  79. 79.
    K. Tu, Electronic Thin-Film Reliability (Cambridge University Press, Cambridge, 2010)CrossRefGoogle Scholar
  80. 80.
    H. Ye, C. Basaran, D. Hopkins, Thermomigration in Pb-Sn solder joints under joule heating during electric current stressing. Appl. Phys. Lett. 82(7), 1045–1047 (2003)CrossRefGoogle Scholar
  81. 81.
    H.Y. Hsiao, C. Chen, Thermomigration in Pb-free SnAg solder joint under alternating current stressing. Appl. Phys. Lett. 94(9), 2007–2010 (2009)CrossRefGoogle Scholar
  82. 82.
    H.Y. Chen, C. Chen, In-situ observation of the failure induced by thermomigration of interstitial Cu in Pb-free flip chip solder joints. In 2009 59th Electronic Components and Technology Conference, San Diego, CA, 2009, pp. 319–324
  83. 83.
    X. Gu, K.C. Yung, Y.C. Chan, D. Yang, Thermomigration and electromigration in Sn8Zn3Bi solder joints. J. Mater. Sci. Mater. Electron. 22(3), 217–222 (2011)CrossRefGoogle Scholar
  84. 84.
    C. Chen, H.M. Tong, K.N. Tu, Electromigration and thermomigration in Pb-free flip-chip solder joints. Annu. Rev. Mater. Res. 40(1), 531–555 (2010)CrossRefGoogle Scholar
  85. 85.
    M.Y. Guo, C.K. Lin, C. Chen, K.N. Tu, Asymmetrical growth of Cu6Sn5 intermetallic compounds due to rapid thermomigration of Cu in molten SnAg solder joints. Intermetallics 29, 155–158 (2012)CrossRefGoogle Scholar
  86. 86.
    F.Y. Ouyang, W.C. Jhu, T.C. Chang, Thermal-gradient induced abnormal Ni3Sn4 interfacial growth at cold side in Sn2.5Ag alloys for three-dimensional integrated circuits. J. Alloys Compd. 580(580), 114–119 (2013)CrossRefGoogle Scholar
  87. 87.
    F.Y. Ouyang, W.C. Jhu, Comparison of thermomigration behaviors between Pb-free flip chip solder joints and microbumps in three dimensional integrated circuits: bump height effect. J. Appl. Phys. 113(4), 043711 (2013)Google Scholar
  88. 88.
    C.J. Meechan, G.W. Lehman, Diffusion of Au and Cu in a temperature gradient. J. Appl. Phys. 33(2), 634–641 (1962)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Yaodong Wang
    • 1
  • Yingxia Liu
    • 1
  • Menglu Li
    • 1
  • K. N. Tu
    • 1
  • Luhua Xu
    • 2
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of California, Los Angeles (UCLA)Los AngelesUSA
  2. 2.Intel CorporationChandlerUSA

Personalised recommendations