Advertisement

Die and Package Level Thermal and Thermal/Moisture Stresses in 3D Packaging: Modeling and Characterization

  • Liangbiao Chen
  • Tengfei Jiang
  • Xuejun FanEmail author
Chapter
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 57)

Abstract

3D packaging employing through-silicon vias (TSVs) to connect multiple stacked dies/chips has great potential to achieve high performance and high capacity with low cost and low energy consumption. However, crucial reliability issues often arise in 3D integrated circuits (ICs) packaging due to high thermal stress and moisture stress at both die and package level. In this chapter, TSV-related reliability issues such as the measurement of thermal stress in TSV, the effect of thermal stress on carrier mobility and keep-out zone, thermal stress induced via extrusion are illustrated. At the package level, various analytical methods for thermal stress-induced warpage in multilayered structures are reviewed. The state-of-the-art approaches for warpage control are presented and validated by experimental testing and numerical modeling. Finally, to incorporate moisture stress that comprehends both hygroscopic stress and the pressure of water vapor, a theoretical framework is provided based on damage micromechanics and the effective stress concept. Some case studies are provided to understand the effect of moisture and vapor pressure.

Keywords

Solder Bump Moisture Diffusion Void Volume Fraction Mold Compound Effective Stress Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

αCu

CTE of copper

αsi

CTE of silicon

β

Coefficient of hygroscopic swelling

σθ

Circumferential stress

σr

Radial stress

σrz

Shear stress in rz plane

σz

Normal stress in z direction

σT

Mismatch thermal stress

Δω3

Frequency shift of the longitudinal Raman mode

ΔHr

Residual via extrusion

ΔT

Thermal loading

ΔTy

Critical thermal load for plastic yielding

εc

Hygroscopic strain

εp

Vapor pressure-induced strain

εT

Thermal strain

\( {\overline{\varepsilon}}_{\mathrm{T}} \)

Average thermal strain

ϕ

Porosity

\( \overset{.}{\phi } \)

Porosity growth rate

γe

The rate of elastic extrusion

γp

The rate of plastic extrusion

η

Generalized Poisson’s ratio

φ

Normalized concentration or activity

κ

Curvature

κapp

Applied external curvature

κnat

Natural bending-induced curvature

ν

Poisson’s ratio

π11, π12, π44

Piezoresistance coefficients

ρa

Apparent moisture density

ρg

Density of saturated water vapor

a

Via radius

A

Geometry factor for calculating thermal stress in multilayered structure

Csat

Saturated moisture concentration

d

Via diameter

D

Moisture diffusivity

DT

Thermal diffusivity

E

Young’s modulus

e

Total volumetric strain

G and λ

Lame’s elastic constants

H

Via depth

hb

Bending axis

hi

Top surface coordinate

hm

Midpoint coordinate

kP

Factor for hydrostatic pressure gradient-driven diffusion

kT

Factor for thermal gradient-driven diffusion

P

Hydrostatic pressure

p

Partial water vapor pressure

pamb

Ambient partial water vapor pressure

pg

Saturated water vapor pressure

Q

Activation energy for moisture diffusivity

S

Solubility

Tm

Maximum temperature during thermal cycling

TR

Room temperature

Tref

Stress-free temperature

ui

Displacement vector

w

Wetness

W

Warpage

Xi

Body force vector

Notes

Acknowledgment

The editors would like to thank Zhiheng Huang from Sun Yat-sen University in China for his critical review of this chapter.

References

  1. 1.
    Z. Wang, J. Microelectromech. Syst. 24, 1211 (2015)CrossRefGoogle Scholar
  2. 2.
    J.U. Knickerbocker et al., IBM J. Res. Dev. 52, 553 (2008)CrossRefGoogle Scholar
  3. 3.
    P. Garrou, C. Bower, P. Ramm, Handbook of 3D Integration (Wiley-VCH, Germany, 2008)Google Scholar
  4. 4.
    M. Jung, J. Mitra, D.Z. Pan, S.K. Lim, Commun. ACM 57, 107 (2014)CrossRefGoogle Scholar
  5. 5.
    JEDEC-JEP158, (JEDEC Solid State Technology Association, 2009)Google Scholar
  6. 6.
    S.W. Yoon, J.H. Ku, F. Carson, in SEMICON Korea 2010 (Seoul, Korean, 2010)Google Scholar
  7. 7.
    K.N. Tu, Microelectron. Reliab. 51, 517 (2011)CrossRefGoogle Scholar
  8. 8.
    C.-H. Liu, J.-L. Tsai, C. Hung-Hsien, C.-L. Lu, S.-C. Chen, in IEEE 64th Electronic Components and Technology Conference, 2014, p. 1628Google Scholar
  9. 9.
    K. Sakuma et al., in IEEE 64th Electronic Components and Technology Conference (ECTC), 2014, p. 647Google Scholar
  10. 10.
    L. Mirkarimi, R. Zhang, A. Agrawal, H. Shaba, B.-S. Lee, R. Katkar, E. Chau, S. Arkalgud, Analytical and Experimental Studies of 2.5D Silicon Interposer Warpage: Impact of Assembly Sequences, Materials Selection and Process Parameters. Paper presented at 11th International Wafer Level Packaging Conference, San Jose, CA, 2014Google Scholar
  11. 11.
    C.-H. Liu, Y.-H. Liao, W.-T. Chen, C.-L. Lu, S.-C. Chen, in IEEE 65th Electronic Components and Technology Conference (ECTC), 2015, p. 1502Google Scholar
  12. 12.
    K. Sakuma et al., in IEEE 65th Electronic Components and Technology Conference (ECTC), 2015, p. 318Google Scholar
  13. 13.
    S.Y. Yang, W.-S. Kwon, S.-B. Lee, Microelectron. Reliab. 52, 718 (2012)CrossRefGoogle Scholar
  14. 14.
    X.J. Fan, E. Suhir, Moisture Sensitivity of Plastic Packages of IC Devices (Springer, New York, 2010)CrossRefGoogle Scholar
  15. 15.
    X.J. Fan, T.B. Lim, in ASME International Mechanical Engineering Congress and Exposition, IMECE/EPE-14, 1999Google Scholar
  16. 16.
    J. Zhou, T.Y. Tee, X.J. Fan, in Moisture Sensitivity of Plastic Packages of IC Devices (Springer, Berlin, 2010), p. 153Google Scholar
  17. 17.
    X.J. Fan, J.-H. Zhao, in 12th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2011, p. 1Google Scholar
  18. 18.
    X.Q. Shi, Y.L. Zhang, Z. Wei, X.J. Fan, IEEE Trans. Compon. Packag. Technol. 31, 94 (2008)CrossRefGoogle Scholar
  19. 19.
    M.N. Kitano, A. Nishimura, S. Kawai, in Proc. IRPS, 1988, p. 90Google Scholar
  20. 20.
    C.G. Shirley, IEEE Trans. Device Mater. Reliab. 14, 426 (2014)CrossRefGoogle Scholar
  21. 21.
    B. Xie, X.Q. Shi, X.J. Fan, in Proceedings of the 57th Electronic Components and Technology Conference, 2007, p. 242Google Scholar
  22. 22.
    B. Xie, X.J. Fan, X. Shi, H. Ding, J. Electron. Packag. 131, 031011 (2009)CrossRefGoogle Scholar
  23. 23.
    B. Xie, X.J. Fan, X. Shi, H. Ding, J. Electron. Packag. 131, 031010 (2009)CrossRefGoogle Scholar
  24. 24.
    E.H. Wong, Y.C. Teo, T.B. Lim, in Proceedings of the Electronic Components and Technology Conference, 1998, p. 1372Google Scholar
  25. 25.
    S. Liu, Y. Mei, IEEE Trans. Compon. Packag. Manuf. Technol. Part A 18, 634 (1995)CrossRefGoogle Scholar
  26. 26.
    X.J. Fan, J. Zhou, A. Chandra, in 58th Electronic Components and Technology Conference, 2008, p. 1054Google Scholar
  27. 27.
    X.J. Fan, G.Q. Zhang, W.D. van Driel, L.J. Ernst, IEEE Trans. Compon. Packag. Technol. 31, 252 (2008)CrossRefGoogle Scholar
  28. 28.
    J.V. Olmen et al., Microelectron. Eng. 88, 745 (2011)CrossRefGoogle Scholar
  29. 29.
    K. Sinwoo et al., in IEEE International 3D Systems Integration Conference (3DIC), 2011, p. 1Google Scholar
  30. 30.
    A. Mercha et al., in IEEE International Electron Devices Meeting (IEDM), 2010, p. 2.2.1Google Scholar
  31. 31.
    A.P. Karmarkar, X. Xu, V. Moroz, in IEEE International Reliability Physics Symposium, 2009, p. 682Google Scholar
  32. 32.
    K.H. Lu, X. Zhang, S.-K. Ryu, J. Im, R. Huang, P.S. Ho, in 59th Electronic Components and Technology Conference (ECTC), 2009, p. 630Google Scholar
  33. 33.
    S.-K. Ryu, K.-H. Lu, X. Zhang, J.-H. Im, P.S. Ho, R. Huang, IEEE Trans. Device Mater. Reliab. 11, 35 (2011)CrossRefGoogle Scholar
  34. 34.
    S.-K. Ryu, T. Jiang, K.H. Lu, J. Im, H.-Y. Son, K.-Y. Byun, R. Huang, P.S. Ho, Appl. Phys. Lett. 100, 041901 (2012)CrossRefGoogle Scholar
  35. 35.
    T. Jiang, S.-K. Ryu, Q. Zhao, J. Im, R. Huang, P.S. Ho, Microelectron. Reliab. 53, 53 (2013)CrossRefGoogle Scholar
  36. 36.
    I. De Wolf, in AIP Conference Proceedings, 2011, p. 138Google Scholar
  37. 37.
    S.-K. Ryu, Q. Zhao, M. Hecker, H.-Y. Son, K.-Y. Byun, J. Im, P.S. Ho, R. Huang, J. Appl. Phys. 111, 063513 (2012)CrossRefGoogle Scholar
  38. 38.
    W.S. Kwon, D.T. Alastair, K.H. Teo, S. Gao, T. Ueda, T. Ishigaki, K.T. Kang, W.S. Yoo, Appl. Phys. Lett. 98, 232106 (2011)CrossRefGoogle Scholar
  39. 39.
    T. Jiang, S.-K. Ryu, J. Im, H.-Y. Son, N.-S. Kim, R. Huang, P.S. Ho, in IEEE International Interconnect Technology Conference (IITC), 2013, p. 1Google Scholar
  40. 40.
    D. Gan, P.S. Ho, R. Huang, J. Leu, J. Maiz, T. Scherban, J. Appl. Phys. 97, 103531 (2005)CrossRefGoogle Scholar
  41. 41.
    T. Jiang, J. Im, R. Huang, P.S. Ho, MRS Bull. 40, 248 (2015)Google Scholar
  42. 42.
    W. De Ingrid, Semicond. Sci. Technol. 11, 139 (1996)CrossRefGoogle Scholar
  43. 43.
    D.J. Gardiner, Practical Raman Spectroscopy (Springer, New York, 1989)CrossRefGoogle Scholar
  44. 44.
    Y. Sun, S. Thompson, T. Nishida, Strain Effect in Semiconductors (Springer, New York, 2010)CrossRefGoogle Scholar
  45. 45.
    A. Mercha et al., in 2010 Symposium on VLSI Technology (VLSIT), 2010, p. 109Google Scholar
  46. 46.
    S. Cho et al., in International Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM), 2011, p. 1Google Scholar
  47. 47.
    R. Suk-Kyu, L. Kuan-Hsun, J. Tengfei, J.-H. Im, H. Rui, P.S. Ho, IEEE Trans. Device Mater. Reliab. 12, 255 (2012)CrossRefGoogle Scholar
  48. 48.
    J.C. Lin et al., in International Electron Devices Meeting (IEDM), 2010, p. 2.1.1Google Scholar
  49. 49.
    T.C. Tsai, W.C. Tsao, W. Lin, C.L. Hsu, C.L. Lin, C.M. Hsu, J.F. Lin, C.C. Huang, J.Y. Wu, Microelectron. Eng. 92, 29 (2012)CrossRefGoogle Scholar
  50. 50.
    T. Jiang, C. Wu, J. Im, R. Huang, P.S. Ho, J. Microelectron. Electron. Packag. 12, 118 (2015)CrossRefGoogle Scholar
  51. 51.
    T. Jiang et al., Appl. Phys. Lett. 103, 211906 (2013)CrossRefGoogle Scholar
  52. 52.
    S.-K. Ryu, T. Jiang, J. Im, P.S. Ho, R. Huang, IEEE Trans. Device Mater. Reliab. 14, 318 (2014)CrossRefGoogle Scholar
  53. 53.
    J. De Messemaeker, O.V. Pedreira, B. Vandevelde, H. Philipsen, I. De Wolf, E. Beyne, K. Croes, in IEEE 63rd Electronic Components and Technology Conference (ECTC), 2013, p. 586Google Scholar
  54. 54.
    J. De Messemaeker, O.V. Pedreira, H. Philipsen, E. Beyne, I. De Wolf, T. Van der Donck, K. Croes, in IEEE 64th Electronic Components and Technology Conference (ECTC), 2014, p. 613Google Scholar
  55. 55.
    D. Campos et al., in 2013 European Microelectronics Packaging Conference (EMPC), 2013, p. 1Google Scholar
  56. 56.
    R.L. Hubbard, P. Zappella, IEEE Transactions on Components. Packag. Manuf. Technol. 1, 1957 (2011)CrossRefGoogle Scholar
  57. 57.
    K.M. Jansen, B. Öztürk, IEEE Transactions on Components. Packag. Manuf. Technol. 3, 459 (2013)CrossRefGoogle Scholar
  58. 58.
    W. Lin, B. Baloglu, K. Stratton, in IEEE 64th Electronic Components and Technology Conference (ECTC), 2014, p. 1401Google Scholar
  59. 59.
    W. Lin, S. Wen, A. Yoshida, J. Shin, in IEEE 62nd Electronic Components and Technology Conference (ECTC), 2012, p. 1406Google Scholar
  60. 60.
    A.-H. Liu, D.W. Wang, H.-M. Huang, M. Sun, M.-R. Lin, C. Zhong, S.-J. Hwang, H.-H. Lu, in IEEE 61st Electronic Components and Technology Conference (ECTC), 2011, p. 431Google Scholar
  61. 61.
    T.H. Wang, C.-I. Tsai, C.-C. Lee, Y.-S. Lai, Microelectron. Reliab. 53, 297 (2013)CrossRefGoogle Scholar
  62. 62.
    D.G. Yang, K.M.B. Jansen, L.J. Ernst, G.Q. Zhang, W.D. van Driel, H.J.L. Bressers, X.J. Fan, in Proceedings of the 54th Electronic Components and Technology Conference, 2004, p. 98Google Scholar
  63. 63.
    X.J. Fan, J. Zhou, G.Q. Zhang, Microelectron. Reliab. 44, 1967 (2004)CrossRefGoogle Scholar
  64. 64.
    K. Sakuma, E. Blackshear, K. Tunga, C. Lian, S. Li, M. Interrante, O. Mantilla, J.-W. Nah, in IEEE 63rd Electronic Components and Technology Conference (ECTC), 2013, p. 667Google Scholar
  65. 65.
    P.S. Huang, M.Y. Tsai, C.Y. Huang, P.C. Lin, L. Huang, M. Chang, S. Shih, J.P. Lin, in 2012 14th International Conference on Electronic Materials and Packaging (EMAP), 2012, p. 1Google Scholar
  66. 66.
    Y. Shen, L. Zhang, W.H. Zhu, J. Zhou, X.J. Fan, IEEE Transactions on Components, Packaging and Manufacturing Technology, doi: 10.1109/TCPMT.2016.2592947, 2016
  67. 67.
    A.N.V. da Silva, Dissertation, Universidade de Lisboa, 2010Google Scholar
  68. 68.
    Y. Wen, C. Basaran, J. Electron. Packag. 125, 134 (2003)CrossRefGoogle Scholar
  69. 69.
    S. Timoshenko, J. Opt. Soc. Am. 11, 233 (1925)CrossRefGoogle Scholar
  70. 70.
    E. Suhir, J. Appl. Mech. 53, 657 (1986)CrossRefGoogle Scholar
  71. 71.
    R.R. Valisetty, L.W. Rehfield, A theory for stress analysis of composite laminates. Paper presented at 4thAIAA/ASME/ASCE/AHS structures, structural dynamics and materials conference, Lake Tahoe, NV, 1983Google Scholar
  72. 72.
    X. Liu, M. Li, D.R. Mullen, J. Cline, S.K. Sitaraman, IEEE Trans. Device Mater. Reliab. 14, 512 (2014)CrossRefGoogle Scholar
  73. 73.
    A.A.O. Tay, T.Y. Lin, in Inter-Society Conference on Thermal Phenomena in Electronic Systems. I-THERM V, 1996, p. 67Google Scholar
  74. 74.
    A.A.O. Tay, T.Y. Lin, in The Sixth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 1998, p. 179Google Scholar
  75. 75.
    J.E. Galloway, B.M. Miles, IEEE Trans. Compon. Packag. Manuf. Technol. Part A 20, 274 (1997)CrossRefGoogle Scholar
  76. 76.
    X.J. Fan, Mechanics of moisture for polymers: fundamental concepts and model study. Paper presented at EuroSimE 2008—international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and micro-systems, 2008Google Scholar
  77. 77.
    T.Y. Tee, Z. Zhong, Microelectron. Reliab. 44, 105 (2004)CrossRefGoogle Scholar
  78. 78.
    L. Chen, J. Adams, H.-W. Chu, X.J. Fan, J. Mater, Sci. Mater. Electron. 27(1), 481–488 (2015)CrossRefGoogle Scholar
  79. 79.
    L. Chen, H.-W. Chu, X.J. Fan, J. Polym. Sci. B 53, 1440 (2015)CrossRefGoogle Scholar
  80. 80.
    X.J. Fan, S.W.R. Lee, Q. Han, Microelectron. Reliab. 49, 861 (2009)CrossRefGoogle Scholar
  81. 81.
    X.J. Fan, J. Zhou, G.Q. Zhang, A. Chandra, in Moisture Sensitivity of Plastic Packages of IC Devices, ed. by X.J. Fan, E. Suhir (Springer, Berlin, 2010), p. 279Google Scholar
  82. 82.
    M.D. Placette, X. Fan, J.-H. Zhao, D. Edwards, Microelectron. Reliab. 52, 1401 (2012)CrossRefGoogle Scholar
  83. 83.
    W.D. van Driel, M. van Gils, X.J. Fan, G.Q. Zhang, L.J. Ernst, IEEE Trans. Compon. Packag. Technol. 31, 260 (2008)CrossRefGoogle Scholar
  84. 84.
    X.J. Fan, G.Q. Zhang, W.D. van Driel, L.J. Ernst, in Proceedings of the Electronic Components and Technology Conference, 2003, p. 733Google Scholar
  85. 85.
    F. Le, S.W.R. Lee, K.M. Lau, C.P. Yue, J.K.O. Sin, P.K.T. Mok, K. Wing-Hung, C. Hoi Wai, in IEEE 64th Electronic Components and Technology Conference (ECTC), 2014, p. 919Google Scholar
  86. 86.
    J. Crank, The Mathematics of Diffusion (Oxford University Press, Oxford, 1956)zbMATHGoogle Scholar
  87. 87.
    S.R. DeGroot, P. Mazur, Non Equilibrium Thermodynamics (North Holland Publishing, North Holland, Amsterdam, 1962)Google Scholar
  88. 88.
    P. Sofronis, R.M. McMeeking, J. Mech. Phys. Solids 37, 317 (1989)CrossRefGoogle Scholar
  89. 89.
    X.J. Fan, J. Zhou, G.Q. Zhang, L.J. Ernst, J. Electron. Packag. 127, 262 (2005)CrossRefGoogle Scholar
  90. 90.
    Y.C. Fung, Foundations of Solid Mechanics (Prentice Hall, Upper Saddle River, NJ, 1965)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringLamar UniversityBeaumontUSA
  2. 2.Department of Material Science and EngineeringUniversity of Central FloridaOrlandoUSA

Personalised recommendations