Skip to main content

Transgenic Cotton for Agronomical Useful Traits

  • Chapter
  • First Online:
Fiber Plants

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 13))

Abstract

Cotton (Gossypium spp.) is an important crop known for its commercial significance both as a fiber and oil yielding cultivar grown in over eighty countries around the world. The crop’s economic importance underlined by its significance in textile industry makes it all the more important for agronomists and crop researchers to strategize novel approaches to overcome challenges in the form of abiotic and biotic stresses such as pests, pathogens, weeds, and more recently environmental challenges in the form of climate change. Conventional breeding technology made significant in roads into developing novel varieties with improved fiber, enhanced heat tolerance and high yields, but significant challenges remain in the areas of pathogen and insect resistance. Transgenesis or genetic engineering was an ideal solution to these challenges with its ability to introduce diverse agronomical important genes from various biological species, and over 80 % of cotton grown currently employs this technology. The present review is a comprehensive account of the historical progress made in the area of transgenic cotton both in terms of the evolution of the methodologies of tissue culture and genetic transformation, and lessons learned from conventional breeding in identifying agronomical important genes to improve cotton production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RD (2010) Opportunities for engineering abiotic stresses. In: Zher UB (ed) Biotechnology advances in agriculture and forestry, 65th edn. Springer, Berlin, pp 127–148

    Google Scholar 

  • Amudha J, Balasubramani G, Malathi VG, Monga D, Kranthi KR (2011) Cotton leaf curl virus resistance transgenics with antisense coat protein gene (AV1). Curr Sci 101:300–307

    CAS  Google Scholar 

  • Aragao FJL, Vianna GR, Carvalheira SBRC, Rech EL (2005) Germ line genetic transformation in cotton (Gossypium hirsutum L.) by selection of transgenic meristematic cells with a herbicide molecule. Plant Sci 168:1227–1233

    Article  CAS  Google Scholar 

  • Arshad M, Zafar Y, Asad S (2013) Silicon carbide whisker-mediated transformation. In: Zhang B (ed) Transgenic cotton: methods and protocols, methods in molecular biology, vol 958. Springer, New York, pp 79–91

    Chapter  Google Scholar 

  • Asad S, Mukhtar Z, Nazir F, Hashmi JA, Mansoor S, Zafar Y, Arshad M (2008) Silicon carbide whisker-mediated embryogenic callus transformation of cotton (Gossypium hirsutum L.) and regeneration of salt tolerant plants. Mol Biotechnol 40:161–169

    CAS  Google Scholar 

  • Balogun NB, Inuwa HM, Sani I, Ishiyaku MF et al (2011) Expression of mannose-binding insecticidal lectin gene in transgenic cotton (Gossypium) plant. Cotton Genomics Genet 2:1–7

    Google Scholar 

  • Barton KA, Binns AN, Matzke AJ, Chilton MD (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32:1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Benbouza H, Lacape JM, Jacquemin JM, Courtois B et al (2010) Introgression of the low-gossypol seed & high-gossypol plant trait in upland cotton: analysis of [(Gossypium hirsutum × G. raimondii) 2 × G. sturtianum] trispecific hybrid and selected derivatives using mapped SSRs. Mol Breed 25:273–286

    Article  CAS  Google Scholar 

  • Beringer J, Palta AM, Baker LW, Petolino JF (2004) Transgenic cotton via whiskers-mediated transformation. Recent Res Dev Crop Sci 1:335–347

    Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Bravo A, Soberon M (2008) How to cope with insect resistance to Bt toxins? Trends Biotechnol 26:573–579

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy VS, Reddy TP, Reddy VD, Rao KV (2014) Current status of genetic engineering in cotton (Gossypium hirsutum L.): an assessment. Crit Rev Biotech 34:144–160

    Article  CAS  Google Scholar 

  • Chen YC, Hubmeier C, Tran M, Martens A et al (2006) Expression of CP4 EPSPS in microspores and tapetum cells of cotton (Gossypium hirsutum) is critical for male reproductive development in response to late-stage glyphosate applications. Plant Biotechnol J 4:477–487

    CAS  PubMed  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  PubMed  Google Scholar 

  • Coutinho EM (2002) Gossypol: a contraceptive for men. Contraception 65:259–263

    Article  CAS  PubMed  Google Scholar 

  • DeBlock M (1993) The cell biology of plant transformation: current state, problems, prospects and the implications for plant breeding. Euphytica 71:1–14

    Article  CAS  Google Scholar 

  • Depicker A, Montagu MV (1997) Post-transcriptional gene silencing inplants. Curr Opin Cell Biol 9:373–382

    Article  PubMed  Google Scholar 

  • Dill GM, Cajacob CA, Padgette SR (2008) Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag Sci 64:326–331

    Article  CAS  PubMed  Google Scholar 

  • Dutt Y, Wang XD, Zhu YZ, Li YY (2004) Breeding for high yield and fibre quality in colored cotton. Plant Breed 123:145–151

    Article  Google Scholar 

  • Emani C, Garcia JM, Lopata-Finch E, Pozo MJ et al (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1:321–336

    Article  CAS  PubMed  Google Scholar 

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ et al (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci USA 93:5389–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finer JJ, McMullen MD (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 8:886–889

    Article  Google Scholar 

  • Firoozabady E, DeBoer D, Merlo D, Halk E et al (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10:105–116

    Article  CAS  PubMed  Google Scholar 

  • Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2:108–165

    Google Scholar 

  • Ganesan M, Bhanomathi P, Kumari G, Prabah AL et al (2009) Transgenic Indian cotton (Gossypium hirsutum L.) harboring rice chitinase gene (chiII) confers resistance to two fungal pathogens. Am J Biochem Biotechnol 5:63–74

    Article  CAS  Google Scholar 

  • Ganesan M, Jayabalan N (2006) Isolation of disease-tolerant cotton (Gossypium hirsutum L. cv. SVPR 2) plants by screening somatic embryos with fungal culture filtrate. Plant Cell Tissue Organ Cult 87:273–284

    Article  Google Scholar 

  • Garay BR, Barrow JR (1988) Pollen selection for heat tolerance in cotton. Crop Sci 5:857–859

    Article  Google Scholar 

  • Gingle AR, Yang H, Chee PW, May OL et al (2006) An integrated web resource for cotton. Crop Sci 46:1998–2007

    Article  Google Scholar 

  • Gong SY, Huang GQ, Sun X, Li P et al (2012) GhAGP31, a cotton non-classical arabinogalactan protein, is involved in response to cold stress during early seedling development. Plant Biol 14:447–457

    Article  CAS  PubMed  Google Scholar 

  • Gould JH, Cedeno M (1998) Adaptation of cotton shoot apex culture to Agrobacterium-mediated transformation. Plant Mol Biol Rep 16:283–285

    Article  Google Scholar 

  • Greenplate JT, Mullins JW, Penn SR, Dahm A et al (2003) Partial characterization of cotton plants expressing two toxin proteins from Bacillus thuringiensis: relative toxin contribution, toxin interaction, and resistance management. J Appl Entomol 127:340–347

    Article  CAS  Google Scholar 

  • Hashmi JA, Zafar Y, Arshad M, Mansoor S, Asad S (2011) Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. Virus Genes 42:286–296

    Article  CAS  PubMed  Google Scholar 

  • Haung GC, Dong YM, Sun JS (1999) Introduction of exogenous DNA into cotton via the pollen-tube pathway with GFP as reporter. Chin Sci Bull 44:698–701

    Article  Google Scholar 

  • He C, Yan J, Shen G, Fu L et al (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield inthe field. Plant Cell Physiol 46:1848–1854

    Article  CAS  PubMed  Google Scholar 

  • Hilbeck A, Meier M, Rombke J, Jansch S et al (2011) Environmental risk assessment of genetically modified plants-concepts and controversies. Environ Sci Eur 23:13

    Article  Google Scholar 

  • James C (2012) Global status of commercialized Biotech/GM crops. ISAAA brief no. 44, Ithaca, New York. http://www.isaaa.org/resources/publications/briefs/44/download/isaaa-brief-44–2012.pdf

  • John ME (1997) Cotton crop improvement through genetic engineering. Crit Rev Biotech 17:185–208

    Article  CAS  Google Scholar 

  • John ME, Keller G (1996) Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci USA 93:12768–12773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juturu VN, Mekala GK, Kirti PB (2014) Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.). Plant Cell Tiss Org Cult 120:813–839

    Article  CAS  Google Scholar 

  • Kandhro MM, Laghari S, Sial MA, Nizamani GS (2002) Performance of early maturing strains of cotton (Gossypium hirsutum L.) developed through induced mutation and hybridization. Asian J Pl Sci 1:581–582

    Google Scholar 

  • Karaca M, Saha S, Jenkins JN, Zipf A, Kohel R, Stelly DM (2002) Simple sequence repeat (SSR) markers linked to the Ligon lintless (Li1) mutant in cotton. J Hered 93:221–224

    Google Scholar 

  • Keller G, Spatola L, McCabe D, Martinell B, Swain W, John ME (1997) Transgenic cotton resistant to herbicide bialaphos. Transgen Res 6:385–392

    Article  CAS  Google Scholar 

  • Keshamma E, Rohini S, Rao KS, Madhusudhan B, Udayakumar M (2008) Tissue culture-independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J Cotton Sci 12:264–272

    CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS (2003) Effect of chloroplastic overproduction of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photoinhibition. Funct Plant Biol 30:101–110

    Article  CAS  Google Scholar 

  • Kos M, van Loon JJ, Dicke M, Vet LE (2009) Transgenic plants as vital components of integrated pest management. Trends Biotechnol 27:621–627

    Article  CAS  PubMed  Google Scholar 

  • Kranthi KR, Jadhav DR, Kranthi S, Wanjari RR, Ali SS, Russell DA (2002) Insecticide resistance in five major insect pests of cotton in India. Crop Prot 21:449–460

    Google Scholar 

  • Kumar M, Shukla AK, Singh H, Verma PC, Singh PK (2013) A genotype-independent Agrobacterium mediated transformation of germinated embryo of cotton (Gossypium hirsutum L). Int J Biotechnol Res 3(1):81–90

    Google Scholar 

  • Kumar M, Shukla AK, Singh H, Tuli R (2009) Development of insect resistant transgenic cotton lines expressing cry1EC gene froman insect bite and wound inducible promoter. J Biotechnol 140:143–148

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumria R, Leelavathi S, Bhatnagar RK, Reddy VS (2003) Regeneration and genetic transformation of cotton: present status and future perspectives. Plant Tissue Cult 13:211–225

    Google Scholar 

  • Li X, Liu B, Cui J, Liu D et al (2011) No evidence of persistent effects of continuously planted transgenic insect-resistant cotton on soil microorganisms. Plant Soil 339:247–257

    Article  CAS  Google Scholar 

  • Li X, Wang XD, Zhao X, Dutt Y (2004) Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Plant Cell Rep 22:691–697

    Article  CAS  PubMed  Google Scholar 

  • Li YE, Zhu Z, Chen ZX, Wu X, Wang W, Li SJ (1998) Obtaining transgenic cotton plants with cowpea trypsin inhibitor. Acta Gossypii Sin 10:237–243

    Google Scholar 

  • Liu GZ, Li XL, Jin SX, Liu XY, Zhu LF, Nie YC, Zhang XL (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9(1):e86895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu JF, Wang XF, Li QL, Li X, Zhang GY, Li MG, Ma ZY (2011) Biolistic transformation of cotton (Gossypium hirsutum L.) with the phyA gene from Aspergillus ficuum. Plant Cell Tissue Organ Cult 106:207–214

    Article  CAS  Google Scholar 

  • Liu YD, Yin ZJ, Yu JW, Li J, Wei HL, Han XL, Shen FF (2012) Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Biol Plant 56:237–246

    Google Scholar 

  • Lu Z, Zeiger E (1994) Selection of higher yield and heat resistance in pima cotton has caused genetically determined changes in stomatal conductance. Physiol Plant 92:273–278

    Article  CAS  Google Scholar 

  • Lu YC, Wei G, Zhu YX (2002) Cloning whole cellulose-synthesizing operon (ayacs operon) from Acetobacter xylenium and transforming it into cultivated cotton plants. Acta Bot Sin 44:441–445

    CAS  Google Scholar 

  • Lukonge E, Labuschagne MT, Hugo A (2007) The evaluation of oil and fatty acid composition in seed of cotton accessions from various countries. J Sci Food Agri 87:340–347

    Article  CAS  Google Scholar 

  • Lusas EW, Jividen GM (1987) Glandless cottonseed: a review of the first 25 years of processing and utilization research. J Am Oil Chem Soc 64:839–854

    Article  CAS  Google Scholar 

  • Lv S, Zhang K, Gao Q, Lian L, Song Y, Zhang J (2008) Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49:1150–1164

    Article  CAS  PubMed  Google Scholar 

  • Lyon BR, Cousins YL, Llewellyn DJ, Dennis ES (1993) Cotton plants transformed with a bacterial degradation gene are protected from accidental spray drift damage by the herbicide 2,4-dichlorophenoxyacetic acid. Transgen Res 2:162–169

    Article  CAS  Google Scholar 

  • Mao YB, Tao XY, Xue XY, Wang LJ, Chen XY (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgen Res 20:665–673

    Article  CAS  Google Scholar 

  • Martin GS, Liu J, Benedict CR, Stipanovic RD, Magill CW (2003) Reduced levels of cadinane sesquiterpenoids in cotton plants expressing antisense (+)-delta-cadinene synthase. Phytochemistry 62:31–38

    Article  CAS  PubMed  Google Scholar 

  • May OL, Culpepper AS, Cerny RE, Coots CB et al (2004) Transgenic cotton with improved resistance to glyphosate herbicide. J Crop Sci 44:234–240

    Article  CAS  Google Scholar 

  • Meissle M, Romeis J (2009) The web-building spider Theridion impressum (Araneae: Theridiidae) is not adversely affected by Bt maize resistant to corn rootworms. Plant Biotechnol J 7:645–656

    Article  CAS  Google Scholar 

  • Moon DO, Kim MO, Lee JD, Kim GY (2008) Gossypol suppresses NF-kappaB activity and NF-kappaB-related gene expression in human leukemia U937 cells. Cancer Lett 264:192–200

    Article  CAS  PubMed  Google Scholar 

  • Muthusamy A, Jayabalan N (2011) In vitro induction of mutation in cotton (Gossypium hirsutum L.) and isolation of mutants with improved yield and fiber characters. Acta Physiol Plant 33:1793–1801

    Article  CAS  Google Scholar 

  • Murray F, Llewellyn D, McFadden H, Last D et al (1999) Expression of the Talaromyces flavus glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic. Mol Breed 5:219–232

    Article  CAS  Google Scholar 

  • Nandeshwar SB, Moghe S, Chakrabarty PK, Deshattiwar MK et al (2009) Agrobacterium-mediated transformation of cry1Ac gene into shoot-tip meristem of diploid cotton Gossypium arboreum cv. RG8 and regeneration of transgenic plants. Plant Mol Biol Rep 27:549–557

    Article  CAS  Google Scholar 

  • Naranjo SE (2005) Long-term assessment of the effects of transgenic Bt cotton on the abundance of nontarget arthropod natural enemies. Environ Entomol 34:1193–1210

    Article  Google Scholar 

  • Nida DL, Kolacz KH, Buehler RE, Deaton WR et al (1996) Glyphosate-tolerant cotton: genetic characterization and protein expression. J Agric Food Chem 44:1960–1966

    Article  CAS  Google Scholar 

  • Obembe OO, Khan T, Popoola JO (2011) Use of somatic embryogenesis as a vehicle for cotton transformation. J Med Plants Res 5:4009–4020

    CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Parkhi V, Kumar V, Campbell LM, Bell AA, Shah J, Rathore KS (2010) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgen Res 19:959–975

    Article  CAS  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Biotechnology 8:939–943

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Shaheen T, Tabbasam N, Iqbal MA, Ashraf M, Zafar Y, Paterson AH (2012) Cotton genetic resources. A review. Agron Sustain Dev 32:419–432

    Article  CAS  Google Scholar 

  • Rajasekaran K, Cary JW, Jaynes JM, Cleveland TE (2005) Disease resistance conferred by the expression of a gene encoding asynthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol J 3:545–554

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran K, Hudspeth RL, Cary JW, Anderson DM, Cleveland TE (2000) High-frequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cell suspension cultures. Plant Cell Rep 19:539–545

    Article  CAS  Google Scholar 

  • Rajasekaran K, Grula JW, Anderson DM (1996) Selection and characterization of mutant cotton (Gossypium hirsutum L.) cell lines resistant to sulfonylurea and imidazolinone herbicides. Plant Sci 119:115–124

    Article  CAS  Google Scholar 

  • Risco CA, Chase CC, DMello JPF (eds) (1997) Handbook of plantand fungal toxicants. CRC Press, Boca Raton, pp 87–98

    Google Scholar 

  • Romano GB, Scheffler JA (2008) Lowering seed gossypol content in glanded cotton (Gossypium hirsutum L.) lines. Plant Breed 127:619–624

    Article  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  CAS  PubMed  Google Scholar 

  • Sakhanokho HF, Ozias-Akins P, May OL, Chee PW (2004) Induction of somatic embryogenesis and plant regeneration in select Georgia and Pee Dee cotton lines. Crop Sci 44:2199–2205

    Google Scholar 

  • Sanjaya, Satyavathi VV, Prasad V, Kirthi N et al (2005) Development of cotton transgenics with antisense AV2 gene for resistance against cotton leaf curl virus (CLCuD) via Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 81:55–63

    Article  CAS  Google Scholar 

  • Sawahel WA (2001) Stable genetic transformation of cotton plants using polybrene-spermidine treatment. Plant Mol Biol Rep 19:377a–377f

    Article  CAS  Google Scholar 

  • Siebert MW, Nolting S, Leonard BR, Braxton LB et al (2008) Efficacy of transgenic cotton expressing Cry1Ac and Cry1F insecticidal protein against heliothines (Lepidoptera: Noctuidae). J Econ Entomol 101:1950–1959

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Kumar M, Chaturvedi CP, Yadav D, Tuli R (2004) Development of a hybrid delta-endotoxin and its expression in tobacco and cotton for control of a polyphagous pest Spodoptera litura. Transgen Res 13:397–410

    Article  CAS  Google Scholar 

  • Showalter AM, Heuberger S, Tabashnik BE, Carriere Y, Coates B (2009) A primer for using transgenic insecticidal cotton in developing countries. J Insect Sci 9:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Stelly DM, Altman DW, Kohel RJ, Rangan TS, Commiskey E (1989) Cytogenetic abnormalities of cotton somaclones from callus cultures. Genome 32:762–770

    Article  Google Scholar 

  • Sun Y, Zhang X, Huang C, Guo X, Nie Y (2006) Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium) species. Plant Cell Rep 25:289–296

    Article  CAS  PubMed  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103:18054–18059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunilkumar G, Rathore KS (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breed 8:37–52

    Article  CAS  Google Scholar 

  • Tabashnik BE, Dennehy TJ, Sims MA, Larkin K et al (2002) Control of resistant pink bollworm (Pectinophora gossypiella) by transgenic cotton that produces Bacillus thuringiensis toxin Cry2Ab. Appl Environ Microbiol 68:3790–3794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian CZ, Wu SJ, Zhao J, Guo WZ, Zhang Z (2010) Pistil drip following pollination: a simple in planta Agrobacterium-mediated transformation in cotton. Biotechnol Lett 32:547–555

    Article  CAS  Google Scholar 

  • Thomas JC, Adams DG, Keppenne VD, Wasmann CC, Brown JK, Bohnert HJ, Kanost MR (1995) Protease inhibitors of Manducasexta expressed in transgenic cotton. Plant Cell Rep 14:758–762

    Article  CAS  PubMed  Google Scholar 

  • Torres JB, Ruberson JR (2008) Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans. Transgen Res 17:345–354

    Article  CAS  Google Scholar 

  • Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Biotechnology 5:263–266

    Article  CAS  Google Scholar 

  • Wallace RD, Sosnoskie LM, Culpepper AS, York AC et al (2011) Tolerance of GlyTol® and GlyTol® + LibertyLink® cotton toglyphosate and glufosinate in the southeastern US. J Cotton Sci 15:80–88

    CAS  Google Scholar 

  • Wang YQ, Chen DJ, Wang DM, Huang QS et al (2004) Over-expression of gastrodia anti-fungal protein enhances Verticillium wilt resistance in coloured cotton. Plant Breed 123:454–459

    Article  CAS  Google Scholar 

  • Wendel JF, Brubaker CL, Edward PA (1992) Genetic diversity in Gossypium hirsutum L. and the origin of upland cotton. Am J Bot 79:1291–1310

    Article  Google Scholar 

  • Wilkins TA, Rajasekaran K, Anderson DM (2000) Cotton biotechnology. Crit Rev Plant Sci 19:511–550

    Article  CAS  Google Scholar 

  • Wu J, Luo X, Zhang X, Shi Y, Tian Y (2011) Development of insect resistant transgenic cotton with chimeric TVip3A* accumulating in chloroplasts. Transgen Res 20:963–973

    Article  CAS  Google Scholar 

  • Wu J, Luo X, Wang Z, Tian Y, Liang A, Sun Y (2008) Transgenic cotton expressing synthesized scorpion insect toxin AaHIT gene confers enhanced resistance to cotton bollworm (Heliothis armigera) larvae. Biotechnol Lett 30:547–554

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Luo X, Guo H, Xiao J, Tian Y (2006) Transgenic cotton, expressing Amaranthus caudatus agglutinin, confers enhanced resistance to aphids. Plant Breed 125:390–394

    Article  CAS  Google Scholar 

  • Wu J, Zhang X, Nie Y, Luo X (2005) High-efficiency transformation of Gossypium hirsutum L. embryogenic calli mediated by Agrobacterium tumefaciens and regeneration of insect-resistant plants. Plant Breed 124:142–146

    Article  CAS  Google Scholar 

  • Yue Y, Zhang M, Zhang J, Tian X, Duan L, Li Z (2012) Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot 63:3741–3748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zapata C, Park SH, El-Zik KM, Smith RH (1999) Transformation of a Texas cotton cultivar by using Agrobacterium and the shoot apex. Theor Appl Genet 98:252–256

    Article  Google Scholar 

  • Zhang JH, Guo JY, Xia JY, Wan FH (2012) Long-term effects of transgenic Bacillus thuringiensis cotton on the non-target Aphis gossypii (Homoptera: Aphididae) maintained for multiple generations. Afr J Biotechnol 11:9873–9880

    Article  Google Scholar 

  • Zhang H, Zhao F, Zhao Y, Guo C, Li C, Xiao K (2009) Establishment of transgenic cotton lines with high efficiency via pollen-tube pathway. Front Agric China 3(4):359–365

    Article  Google Scholar 

  • Zhao FY, Li YF, Xu P (2006) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L. cv. Zhongmian 35) using glyphosate as a selectable marker. Biotechnol Lett 28:1199–1207

    Article  CAS  PubMed  Google Scholar 

  • Zhou GY, Weng J, Zeng Y et al (1983) Introduction of exogenous DNA into cotton embryos. Methods Enzymol 101:433–481

    Article  CAS  PubMed  Google Scholar 

  • Zhu SJ, Li L, Chen JH, He QL, Fang XX, Ye CY, Yan SF, Huang ZR, Mei L (2011) Advance in research and utilization of cotton biotechnology in China. Plant Omics J 4:329–338

    CAS  Google Scholar 

  • Zhu C, Ruan L, Peng D, Yu Z, Sun M (2006) Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Lett Appl Microbiol 42:109–114

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrakanth Emani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Emani, C. (2016). Transgenic Cotton for Agronomical Useful Traits. In: Ramawat, K., Ahuja, M. (eds) Fiber Plants. Sustainable Development and Biodiversity, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-44570-0_10

Download citation

Publish with us

Policies and ethics