Skip to main content

Antiplane Deformation of Elastic Bodies with Notches and Cracks

  • Chapter
  • First Online:
Stress Concentration at Notches

Abstract

Antiplane deformation of elastic bodies with notches or cracks is studied in the tenth chapter. The eigenproblem solution for semi-infinite rounded wedge in the antiplane elasticity theory was constructed. Based on this solution, the interrelation between stress concentration factor and stress intensity factor for rounded or sharp V-shaped notches under longitudinal shear had been established. The longitudinal shear of elastic wedge with cracks or notches was analyzed. Elastic–plastic interaction of sharp V-notch with a circular hole was examined. Solutions were found for stress concentration near curvilinear holes (including narrow slot, oval, rhombic, and rectangular holes) with either sharp or rounded vertices under antiplane deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agalaryan, O.B.: Asymptotic behaviour of longitudinal shear of nonlinear elastic body problem solution in the vicinity of angular points. Proc. Natl. Acad. Sci. Armen. Mech. 61(2), 36–44 (2008)

    MathSciNet  Google Scholar 

  2. Agalaryan, O.B., Tamanyan, G.Y.: On plane problem of longitudinal shear compound wedge with the radial crack of arbitrary length under different boundary conditions. Proc. Natl. Acad. Sci. Armen. Mech. 58(3), 3–9 (2005)

    Google Scholar 

  3. Anheuser, M., Gross, D.: Higher order fields at crack and notch tips in power-law materials under longitudinal shear. Arch. Appl. Mech. 64(8), 509–518 (1994)

    Article  MATH  Google Scholar 

  4. Astaf’ev, V.I., Radaev, Y.N., Stepanova, L.V.: Nelineynaya mekhanika razrusheniya (Nonlinear Fracture Mechanics). Samara University, Samara (2004)

    Google Scholar 

  5. Benthem, J.P.: Stresses in the region of rounded corners. Int. J. Solids Struct. 23(2), 239–252 (1987)

    Article  Google Scholar 

  6. Beom, H.G., Jang, H.S.: A wedge crack in an anisotropic material under antiplane shear. Int. J. Eng. Sci. 49(9), 867–880 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berto, F.: Fictitious notch rounding concept applied to V-notches with end holes under mode 3 loading. Int. J. Fatig. 38, 188–193 (2012)

    Article  Google Scholar 

  8. Cai, X., Yuan, F.: Stress exponents of asymptotic solutions at the notch tip in anisotropic power law material under antiplane shear. Eng. Fract. Mech. 53(2), 153–167 (1996)

    Article  Google Scholar 

  9. Chen, D.H., Nisitani, H.: Singular stress field near a corner of jointed dissimilar materials under antiplane loads. JSME Int. J. 35, 399–403 (1992)

    Google Scholar 

  10. Cherepanov, G.P.: Mekhanika khrupkogo razrusheniya (Mechanics of Brittle Fracture). Nauka, Moscow (1974)

    Google Scholar 

  11. Cheung, Y.K., Chen, Y.Z.: A new boundary integral equation for notch problem of antiplane elasticity. Int. J. Fract. 65(4), 359–368 (1994)

    Article  Google Scholar 

  12. Chiu, J.S., Chaudhuri, R.A.: Three-dimensional asymptotic stress field at the front of an unsymmetric bimaterial pie-shaped wedge under antiplane shear loading. Compos. Struct. 58(1), 129–137 (2002)

    Article  Google Scholar 

  13. Chue, C.H., Chen, C.D.: Antiplane stress singularities in a bonded bimaterial piezoelectric wedge. Arch. Appl. Mech. 72(9), 673–685 (2003)

    Article  MATH  Google Scholar 

  14. Chue, C.H., Liu, W.J.: Comments on "analysis of an isotropic finite wedge under antiplane deformation" [Int. J. Solids Struct. 34 (1997) 113–128]. Int. J. Solids Struct. 41(18), 5023–5034 (2004)

    Article  MATH  Google Scholar 

  15. Creager, M., Paris, P.C.: Elastic field equations for blunt cracks with reference to stress corrosion cracking. Int. J. Fract. Mech. 3, 247–252 (1967)

    Google Scholar 

  16. Duan, J., Li, X., Lei, Y.: A note on stress intensity factors for a crack emanating from a sharp V-notch. Eng. Fract. Mech. 90, 180–187 (2012)

    Article  Google Scholar 

  17. Durban, D., Ore, E.: Interface stress singularities at a notch tip in antiplane shear. J. Appl. Mech. 54(2), 470–472 (1987)

    Article  Google Scholar 

  18. Erdogan, F., Gupta, G.D.: Bonded wedges with an interface crack under anti-plane shear loading. Int. J. Fract. 11(4), 583–593 (1975)

    Article  Google Scholar 

  19. Faal, R.T., Fotuhi, A.R., Fariborz, S.J., Daghyani, H.R.: Antiplane stress analysis of an isotropic wedge with multiple cracks. Int. J. Solids Struct. 41(16), 4535–4550 (2004)

    Article  MATH  Google Scholar 

  20. Ibragimov, V., Romanchak, V.M.: On the fracture criterion for regions with angular points. Teor. Prikl. Mekh 11, 9–13 (1984)

    Google Scholar 

  21. Ilyushin, A.A.: Plastichnost’: uprugo-plasticheskiye deformatsii (Plasticity: Elastic-Plastic Deformations). Gostekhidzat, Moscow (1948)

    Google Scholar 

  22. Kargarnovin, M.H., Fariborz, S.J.: Analysis of a dissimilar finite wedge under antiplane deformation. Mech. Res. Commun. 27(1), 109–116 (2000)

    Article  MATH  Google Scholar 

  23. Kargarnovin, M.H., Shahani, A.R., Fariborz, S.J.: Analysis of an isotropic finite wedge under antiplane deformation. Int. J. Solids Struct. 34(1), 113–128 (1997)

    Article  MATH  Google Scholar 

  24. Kazberuk, A.: Dwuwymiarowe zagadnienia mechaniki pȩkania ciał z karbami (Two-Dimensional Problems of Fracture Mechanics of Bodies with Notches). Bialystok University of Technology, Bialystok (2010)

    Google Scholar 

  25. Kazberuk, A., Savruk, M.P., Tarasiuk, G.: Concentration of stresses in the rounded corners of the notches and holes under antiplane deformation. In: Fatigue and fracture mechanics: Proceedings of XXIV Symposium. University Technology and Life Sciences. Bydgoszcz, pp. 69–70 (2012)

    Google Scholar 

  26. Kohno, Y., Ishikawa, H.: Singularities and stress intensities at the corner point of a polygonal hole and rigid polygonal inclusion under antiplane shear. Int. J. Eng. Sci. 33(11), 1547–1560 (1995)

    Article  MATH  Google Scholar 

  27. Kornev, V.M.: Modified neuber-novozhilov criterion of rupture for V-shaped cuts (antiplane problem). J. Appl. Mech. Tech. Phys. 43(1), 128–132 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kryven’, I., Yavors’ka, M.I.: Plastic layers development in the neighbourhood of tips of symmetric cut formed by arcs of two circles under untiplane deformation. Phys.-Mech. Model. Inf. Technol. 11, 91–96 (2010)

    Google Scholar 

  29. Kryven’, V.: Linear model of a plastic zone in the vicinity of a sharp notch under the conditions of longitudinal shear. Mater. Sci. 40, 475–483 (2004)

    Article  Google Scholar 

  30. Kryven’, V.A.: Generalization representations of plastic zone under untiplane deformation of perfectly elastic-plastic bodies with a peaked stress concentrator. Rep. Acad. Sci. Ukr. SSR, Ser. A 2, 31–34 (1983)

    Google Scholar 

  31. Kryven’, V.A.: Branching of plastic strips near the tip of a notch under longitudinal shear. Mater. Sci. 37(3), 403–414 (2001)

    Article  Google Scholar 

  32. Kryven’, V.A., Boiko, A., Kaplun, A.: Development of plastic strips in the process of shear deformation of a body with narrow rectangular slot. Mater. Sci. 50(4), 527–535 (2015)

    Article  Google Scholar 

  33. Kryven’, V.A., Sulym, G.T.: Development of plastic zones under longitudinal shear of space with system doubly-periodic rhombic notches with rounded vertexes. Mashynoznavstvo (Engineering) 3, 24–27 (2003)

    Google Scholar 

  34. Kryvien’, V.A., Yavors’ka, M.I.: Development of plastic bands in the process of shear near the tips of a rectangular slot. Mater. Sci. 39(4), 492–497 (2003)

    Article  Google Scholar 

  35. Kryvien’, V.A., Yavors’ka, M.I.: Plastic shear zone near rectangular and rounded notches of constant width. J. Math. Sci. 47(2), 138–144 (2004)

    Google Scholar 

  36. Lazzarin, P., Zappalorto, M.: Plastic notch stress intensity factors for pointed v-notches under antiplane shear loading. Int. J. Fract. 152(1), 1–25 (2008)

    Article  MATH  Google Scholar 

  37. Liu, C.I., Chue, C.H.: On the stress singularity of dissimilar anisotropic wedges and junctions in antiplane shear. Compos. Struct. 73(4), 432–442 (2006)

    Article  Google Scholar 

  38. Ma, C.C., Hour, B.L.: Analysis of dissimilar anisotropic wedges subjected to antiplane shear deformation. Int. J. Solids Struct. 25(11), 1295–1309 (1989)

    Article  MATH  Google Scholar 

  39. Mikhailov, S.E.: Solution of problems on the anti-plane deformation of elastic bodies with corner points by the method of integral equations. J. Appl. Math. Mech. 47(6), 783–788 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mikhlin, S.G.: Integral Equations and Their Applications to Certain Problems in Mechanics, Mathematical Physics and Technology. Macmillan, New York (1964)

    MATH  Google Scholar 

  41. Mirsalimov, V.M.: Effect of relieving apertures on crack development. Strength Mater. 3(4), 387–389 (1971)

    Article  Google Scholar 

  42. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity, 2nd edn. Noordhoff International Publishing, Leyden (1977)

    Book  Google Scholar 

  43. Muskhelishvili, N.I.: Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics. Dover Books on Physics. Dover Publications, New York (2008)

    MATH  Google Scholar 

  44. Neuber, H.: Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. J. Appl. Mech. 28(4), 544–550 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  45. Neuber, H.: Kerbspannungslehre: Theorie der Spannungskonzetration; genaue Berechnung der Festigkeit, dritte Auflage, 3rd edn. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  46. Nirashima, K.I.: Stresses and displacements around opening under longitudinal shear. Proc. Jpn. Soc. Civ. Eng. 220, 131–141 (1973)

    Article  Google Scholar 

  47. Ore, E., Durban, D.: Boundary effects at a notch tip in anti-plane shear. Int. J. Fract. 38(1), 15–24 (1988)

    Google Scholar 

  48. Panasyuk, V.V., Andreykiv, A.Y., Parton, V.Z.: Osnovy mekhaniki razrusheniya (Foundations of the Fracture Mechanics of Materials). Naukova dumka, Kyiv (1988)

    Google Scholar 

  49. Panasyuk, V.V., Savruk, M.P., Datsyshin, A.P.: Raspredeleniye napryazhenii okolo treshchin v plastinakh i obolochkakh (Stress Distribution Around Cracks in Plates and Shells). Naukova dumka, Kyiv (1976)

    Google Scholar 

  50. Qian, J., Hasebe, N.: Property of eigenvalues and eigenfunctions for an interface V-notch in antiplane elasticity. Eng. Fract. Mech. 56(6), 729–734 (1997)

    Article  Google Scholar 

  51. Qian, J., Long, Y.: Sub-region mixed FEM for calculating stress intensity factor of antiplane notch in bi-material. Eng. Fract. Mech. 43(6), 1003–1007 (1992)

    Article  Google Scholar 

  52. Reklaitis, G.V., Ravindran, A., Ragsdell, K.M.: Engineering Optimization. Methods and Applications. Wiley, New York (1983)

    Google Scholar 

  53. Rice, J.: Stresses due to a sharp notch in a work-hardening elastic-plastic material loaded by longitudinal shear. J. Appl. Mech. 34(2), 287–298 (1967)

    Article  Google Scholar 

  54. Rice, J.R.: Contained plastic deformation near cracks and notches under longitudinal shear. Int. J. Fract. Mech. 2(2), 426–447 (1966)

    Google Scholar 

  55. Savruk, M.P.: System of curved slits in an elastic body under antiplane-strain. Mater. Sci. 15(4), 391–396 (1979)

    Article  Google Scholar 

  56. Savruk, M.P.: Dvumernyye zadachi uprugosti dla tel s treshchinami (Two-Dimensional Problems of Elasticity for Bodies with Cracks). Naukova dumka, Kyiv (1981)

    MATH  Google Scholar 

  57. Savruk, M.P.: Koeficienty intensivnosti napryazhenii v telakh s treshchinami (Stress Intensity Factors in Bodies with Cracks). Naukova dumka, Kyiv (1988)

    Google Scholar 

  58. Savruk, M.P.: Longitudinal shear of an elastic wedge with cracks and notches. Mater. Sci. 38(5), 672–684 (2002)

    Article  Google Scholar 

  59. Savruk, M.P., Kazberuk, A.: Relationship between the stress intensity and stress concentration factors for sharp and rounded notches. Mater. Sci. 42(6), 725–738 (2006)

    Article  Google Scholar 

  60. Savruk, M.P., Kazberuk, A.: A unified approach to problems of stress concentration near V-shaped notches with sharp and rounded tip. Int. Appl. Mech. 43(2), 182–197 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  61. Savruk, M.P., Kazberuk, A.: A unified approach to the problem of the distribution of stresses near sharp and rounded v-shaped notches. In: Mhitarian, S.M. (ed.) Aktual’nye problemy mekhaniki sploshnoy sredy, pp. 359–363. Erevanskiy gos. un-t arhitektury i stroitel’stva, Erevan (2007)

    Google Scholar 

  62. Savruk, M.P., Kazberuk, A.: Two-dimensional fracture mechanics problems for solids with sharp and rounded V-notches. Int. J. Fract. 161, 79–95 (2010)

    Article  MATH  Google Scholar 

  63. Savruk, M.P., Kazberuk, A.: Distribution of stresses near V-shaped notches in the complex stressed state. Mater. Sci. 47(4), 476–487 (2012)

    Article  Google Scholar 

  64. Savruk, M.P., Kazberuk, A., Tarasiuk, G.: Distribution of stresses over the contour of rounded v-shaped notch under antiplane deformation. Mater. Sci. 47(6), 717–725 (2012)

    Article  Google Scholar 

  65. Savruk, M.P., Kazberuk, A., Tarasiuk, G.: Stress concentration near holes in the elastic plane subjected to antiplane deformation. Mater. Sci. 48(4), 415–426 (2013)

    Article  Google Scholar 

  66. Savruk, M.P., Osechko, A.M.: Longitudinal shear of an infinite body with a system of polygonal cracks. Mater. Sci. 39(5), 658–671 (2003)

    Article  Google Scholar 

  67. Savruk, M.P., Osechko, A.M.: Influence of parameterization of unsmooth boundary contour on the convergence of numerical results in problems of stress concentration. In: Diagnostyka, dovgovichnist’ ta rekonstruktsiya mostiv i budivelnykh konstruktsii (Diagnosis, Durability and Reconstruction of Bridges and Building Structures), pp. 137–145. Lviv (2004)

    Google Scholar 

  68. Savruk, M.P., Osechko, A.M.: Elastic equilibrium of wedge with a curvilinear crack under antiplane deformation. In: Proceedings III International Symposium on Damage Mechanics on Materials and Structure, pp. 353–356. Bialystok (2005)

    Google Scholar 

  69. Savruk, M.P., Osechko, A.M.: Interaction arbitrarily placed cracks with a v-notch under antiplane deformation. Math. Methods Phys.-Mech. Fields 48(4), 165–171 (2005)

    Google Scholar 

  70. Savruk, M.P., Osechko, A.M.: Elastic-plastic interaction of a v-notch and a hole under antiplane deformation of the body. In: V.V. Panasyuk (ed.) Mekhanika ruinuvannya materialiv i mitsnist’ konstruktsii (Fracture Mechanics of Materials and Strength of Structures), pp. 173–178. Lviv (2009)

    Google Scholar 

  71. Savruk, M.P., Osiv, P.M., Prokopchuk, I.V.: Chislennyy analiz v ploskikh zadachakh teorii treshchin (Numerical Analysis in Plane Problems of Theory of Cracks). Naukova dumka, Kyiv (1989)

    Google Scholar 

  72. Savruk, M.P., Osyechko, A.M.: Determination of the stress state of an infinite body with kinked cracks. Mashynoznavstvo (Engineering) 9, 21–25 (2002)

    Google Scholar 

  73. Savruk, M.P., Osyechko, A.M.: Longitudinal shear of an elastic body with a double-link kinked crack. In: V.V. Panasyuk (ed.) Mekhanika i fizyka ruinuvannya budivelnykh materialiv ta konstruktsii (Mechanics and Physics of Fracture of Building Materials and Structures), vol. 5, pp. 182–188. Lviv (2002)

    Google Scholar 

  74. Savruk, M.P., Osyechko, A.M., Panasyuk, V.E.: Deformation fracture criterion for bodies with V-notches under the conditions of longitudinal shear. Mater. Sci. 43(1), 46–52 (2007)

    Article  Google Scholar 

  75. Savruk, M.P., Zelenyak, V.M.: Singular integral equations of plane problems of thermal conductivity and thermoelasticity for a piecewise-uniform plane with cracks. Mater. Sci. 22, 82–88 (1986)

    Google Scholar 

  76. Savruk, M.P., Zelenyak, V.M.: Dvovymirni zadachi termopruzhnosti dla kuskovo-odnoridnykh til z trishchynamy (Two-Dimensional Problem of Thermoelasticity for Piecewise Homogeneous Bodies with Cracks). Rastr-7, Lviv (2009)

    Google Scholar 

  77. Seweryn, A.: Brittle fracture criterion for structures with sharp notches. Eng. Fract. Mech. 47(5), 673–681 (1994)

    Article  Google Scholar 

  78. Seweryn, A.: Metody numeryczne w mechanice pekania (Numerical Methods in Fracture Mechanics). Inst. Fund. Tech. Res. Polish Acad. Sci. Warsaw (2003)

    Google Scholar 

  79. Seweryn, A., Molski, K.: Elastic stress singularities and corresponding generalized stress intensity factors for angular corners under various boundary conditions. Eng. Fract. Mech. 55(4), 529–556 (1996)

    Article  Google Scholar 

  80. Shahani, A.R.: Mode III stress intensity factors for edge-cracked circular shafts, bonded wedges, bonded half planes and DCB’s. Int. J. Solids Struct. 40(24), 6567–6576 (2003)

    Article  MATH  Google Scholar 

  81. Shahani, A.R.: Mode III stress intensity factors in an interfacial crack in dissimilar bonded materials. Arch. Appl. Mech. 75(6–7), 405–411 (2006)

    Article  MATH  Google Scholar 

  82. Sham, T.L.: Weight functions for piecewise homogeneous isotropic notches in antiplane strain by finite element method. Eng. Fract. Mech. 31(4), 567–576 (1988)

    Article  Google Scholar 

  83. Sham, T.L., Bueckner, H.F.: The weight-function theory for piecewise homogeneous isotropic notches in antiplane strain. J. Appl. Mech. 55(3), 596–603 (1988)

    Article  MATH  Google Scholar 

  84. Shi, W.: Path-independent integral for the sharp V-notch in longitudinal shear problem. Int. J. Solids Struct. 48(3), 567–572 (2011)

    Article  MATH  Google Scholar 

  85. Sidi, A.: A new variable transformation for numerical integration. In: Brass, H., Hämmerlin, G. (eds.) Numerical Integration IV, pp. 359–373. Birkhäuser, Basel (1993)

    Chapter  Google Scholar 

  86. Sih, G.C., Liebowitz, H.: Mathematical theories of brittle fracture. In: Liebowitz, H. (ed.) Fracture, vol. 2, pp. 67–190. Academic Press, New York (1968)

    Google Scholar 

  87. Slepian, L.I.: Mechanics of Cracks. Sudostroenye, Leningrad (1990)

    Google Scholar 

  88. Smith, E.: The mode III elastic stress distribution near the root of (a) an intrusion-type notch and (b) a key-hole notch. Int. J. Eng. Sci. 44(5), 340–344 (2006)

    Article  Google Scholar 

  89. Sokolovsky, V.V.: Teoriya plastichnosti (Theory of Plasticity). Wysshaya Shkola, Moscow (1969)

    Google Scholar 

  90. Sulym, G.T., Kryven’, V., Mandziy, L.: The development of plastic strips in an medium with doubly-periodic system of rhombic cutouts under longitudinal shear. Mashynoznavstvo (Engineering) 9, 8–10 (2003)

    Google Scholar 

  91. Turska-Klebek, E., Sokolowski, M.: On the influence of defects upon stress concentration at the crack. Arch. Mech. 36(1), 121–126 (1984)

    Google Scholar 

  92. Tvardovsky, V.V.: Longitudinal shear of the body weakened by an arbitrary acute-angled defect. Mech. Solids 24(1), 95–100 (1989)

    Google Scholar 

  93. Wang, T., Kishimoto, K.: Higher order fields for damaged nonlinear antiplane shear notch, crack and inclusion problems. Eur. J. Mech. A/Solids 18(6), 963–986 (1999)

    Article  MATH  Google Scholar 

  94. Wang, T.J., Kuang, Z.B.: Higher order asymptotic solutions of V-notch tip fields for damaged nonlinear materials under antiplane shear loading. Int. J. Fract. 96(4), 303–329 (1999)

    Article  Google Scholar 

  95. Xie, M., Chaudhuri, R.A.: Three-dimensional asymptotic stress field at the front of a bimaterial wedge of symmetric geometry under antiplane shear loading. Compos. Struct. 54(4), 509–514 (2001)

    Article  Google Scholar 

  96. Xu, Y., Yuan, S.: Complete eigen-solutions for plane notches with multi-materials by the imbedding method. Int. J. Fract. 81(4), 373–381 (1996)

    Article  Google Scholar 

  97. Xu, Y., Yuan, S.: Complete eigen-solutions for anti-plane notches with multi-materials by super-inverse iteration. Acta Mech. Solida Sinica 10(2), 157–166 (1997)

    Google Scholar 

  98. Yang, S., Yuan, F., Cai, X.: Higher order asymptotic elastic-plastic crack-tip fields under antiplane shear. Eng. Fract. Mech. 54(3), 405–422 (1996)

    Article  Google Scholar 

  99. Yuan, F.G., Yang, S.: Analytical solutions of fully plastic crack-tip higher order fields under antiplane shear. Int. J. Fract. 69(1), 1–26 (1994)

    Article  Google Scholar 

  100. Zadoyan, M.A.: Longitudinal shear of the composite wedge. Proc. Acad. Sci. USSR 296, 297–302 (1987)

    Google Scholar 

  101. Zappalorto, M., Lazzarin, P.: Analytical study of the elastic-plastic stress fields ahead of parabolic notches under antiplane shear loading. Int. J. Fract. 148(2), 139–154 (2007)

    Article  MATH  Google Scholar 

  102. Zappalorto, M., Lazzarin, P.: A new version of the neuber rule accounting for the influence of the notch opening angle for out-of-plane shear loads. Int. J. Solids Struct. 46(9), 1901–1910 (2009)

    Article  MATH  Google Scholar 

  103. Zappalorto, M., Lazzarin, P.: A unified approach to the analysis of nonlinear stress and strain fields ahead of mode III-loaded notches and cracks. Int. J. Solids Struct. 47(6), 851–864 (2010)

    Article  MATH  Google Scholar 

  104. Zappalorto, M., Lazzarin, P.: In-plane and out-of-plane stress field solutions for V-notches with end holes. Int. J. Fract. 168(2), 167–180 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykhaylo P. Savruk .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Savruk, M.P., Kazberuk, A. (2017). Antiplane Deformation of Elastic Bodies with Notches and Cracks. In: Stress Concentration at Notches. Springer, Cham. https://doi.org/10.1007/978-3-319-44555-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44555-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44554-0

  • Online ISBN: 978-3-319-44555-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics