Advertisement

Anharmonic Properties of MgO

  • Jonathan BreezeEmail author
Chapter
  • 488 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, the anharmonic properties of Magnesium Oxide (MgO) will be investigated. The harmonic properties calculated using density functional perturbation theory (DFPT) in Chap.  5 and the quantum field theory (QFT) of anharmonic phonons developed in Chap.  6 will be combined to predict the temperature dependence of thermal expansion, dielectric loss and relative permittivity.

Keywords

Brillouin Zone Acoustic Phonon Relaxation Frequency Phonon Branch Transverse Optical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Debernardi, S. Baroni, E. Molarini, Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys. Rev. Lett. 75, 1819 (1995)CrossRefGoogle Scholar
  2. 2.
    A. Debernardi, M. Cardona, Isotopic effects on the lattice constant in compound semiconductors by perturbation theory: an ab initio calculation. Phys. Rev. B 54, 11305 (1996)CrossRefGoogle Scholar
  3. 3.
    A. Debernardi, Phonon linewidth in III–V semiconductors from density-functional perturbation theory. Phys. Rev. B 57, 12847 (1998)CrossRefGoogle Scholar
  4. 4.
    A. Debernardi, M. Cardona, First principles calculation of the real part of phonon self energy in compound semiconductors. Phys. B: Conden. Matter 263, 687 (1999)CrossRefGoogle Scholar
  5. 5.
    G. Lang et al., Anharmonic line shift and linewidth of the Raman mode in covalent semiconductors. Phys. Rev. B 59, 6182 (1999)CrossRefGoogle Scholar
  6. 6.
    G. Deinzer, G. Birner, D. Strauch, Ab initio calculation of the linewidth of various modes in germanium and silicon. Phys. Rev. B 67, 144304 (2003)CrossRefGoogle Scholar
  7. 7.
    J.M. Ziman, Electrons and Phonons, 1st edn. (Oxford University Press, Oxford, 1960)Google Scholar
  8. 8.
    R. Berman, E.L. Foster, J.M. Ziman, The thermal conductivity of dielectric crystals: the effect of isotopes. Proc. R. Soc. Lond. Ser. A 237, 344 (1956)CrossRefGoogle Scholar
  9. 9.
    V.I. Ozhogin et al., Isotope effect in the thermal conductivity of germanium single crystals. J. Exp. Theor. Phys. Lett. 63, 490 (1996)CrossRefGoogle Scholar
  10. 10.
    J.M. Zhang et al., Optical phonons in isotopic Ge studied by Raman scattering. Phys. Rev. B 57, 1348 (1998)CrossRefGoogle Scholar
  11. 11.
    A. Göbel et al., Effects of isotope disorder on energies and lifetimes of phonons in germanium. Phys. Rev. B 58, 10510 (1998)CrossRefGoogle Scholar
  12. 12.
    J. Serrano et al., Dispersive phonon linewidths: the E\(_2\) phonons of ZnO. Phys. Rev. Lett. 90, 055510 (2003)CrossRefGoogle Scholar
  13. 13.
    S. Tamura, Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 27, 858 (1983)CrossRefGoogle Scholar
  14. 14.
    F. Widulle, J. Serrano, M. Cardona, Disorder-induced phonon self-energy of semiconductors with binary isotopic composition. Phys. Rev. B 65, 075206 (2002)CrossRefGoogle Scholar
  15. 15.
    G.K. White, O.L. Anderson, Grüneisen parameter of magnesium oxide. J. Appl. Phys. 37, 430 (1966)CrossRefGoogle Scholar
  16. 16.
    P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994)CrossRefGoogle Scholar
  17. 17.
    M.J.L. Sangster, G. Peckham, D.H. Saunderson, Lattice dynamics of magnesium oxide. J. Phys. C 3, 1026 (1970)CrossRefGoogle Scholar
  18. 18.
    C. Herring, Accidental degeneracy in energy bands of crystals. Phys. Rev. 52, 365 (1937)CrossRefGoogle Scholar
  19. 19.
    C. Herring, Role of low-energy phonons in thermal conduction. Phys. Rev. 95, 954 (1954)CrossRefGoogle Scholar
  20. 20.
    Y. Balagurov, V.G. Vaks, B.I. Shklovskii, Attenuation of critical vibrations and dielectric losses in displacive-type ferroelectrics. Sov. Phys. Solid State 12, 70 (1970)Google Scholar
  21. 21.
    V.L. Gurevich, Dielectric losses in crystals. Fizika Tverdogo Tela 21, 3453 (1979)Google Scholar
  22. 22.
    V.L. Gurevich, A.K. Tagantsev, Intrinsic dielectric loss in crystals: low temperatures. Sov. Phys. JETP 64, 142 (1986)Google Scholar
  23. 23.
    V.L. Gurevich, Transport in Phonon Systems, 1st edn. (North-Holland Physics Publishing, Amsterdam, 1986)Google Scholar
  24. 24.
    V.L. Gurevich, A.K. Tagantsev, Intrinsic dielectric loss in crystals. Adv. Phys. 40, 719 (1991)CrossRefGoogle Scholar
  25. 25.
    C.D. Hansen, C.R. Johnson, Visualization Handbook (Academic Press, New York, 2004), pp. 7–11Google Scholar
  26. 26.
    H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)CrossRefGoogle Scholar
  27. 27.
    G.A. Komandin et al., Multiphonon absorption in a MgO single crystal in the terahertz range. Phys. Solid State 51, 1928 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations