Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 783 Accesses

Abstract

The advent of quantum mechanical codes implementing density functional theory within the local density approximation for periodic systems has made it possible to predict their properties ab-initio, without the use of empirical data. This chapter will use these invaluable tools to calculate some of the properties of microwave dielectric ceramics. Calculation of the complex permittivity of a material at microwave frequencies requires knowledge of harmonic properties such as phonon eigenfrequencies, Born effective charges and electronic permittivity. This chapter will report detailed modelling of the crystal structure and harmonic lattice dynamical properties of MgO, LaAlO\(_3\), TiO\(_2\) and Al\(_2\)O\(_3\) using density functional perturbation theory (DFPT). For each material the convergence of the ground-state energy with respect to plane-wave cut-off energy and electronic k-point sampling will be investigated. The equilibrium crystal structure and lattice parameters will then be found by minimization of the total energy with respect to lattice parameter and the ionic positions. Phonon dispersion relations and the response to electric fields will be used to calculate the low-frequency permittivity of each material and then compared to low-temperature experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  2. J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981)

    Article  Google Scholar 

  3. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991)

    Article  Google Scholar 

  4. O. Schütt et al., Ab initio lattice dynamics and charge fluctuations in alkaline-earth oxides. Phys. Rev. B 50, 3746 (1994)

    Article  Google Scholar 

  5. M.J.L. Sangster, G. Peckham, D.H. Saunderson, Lattice dynamics of magnesium oxide. J. Phys. C 3, 1026 (1970)

    Article  Google Scholar 

  6. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  7. M. Sparks, D.F. King, D.L. Mills, Simple theory of microwave absorption in alkali halides. Phys. Rev. B 26, 6987 (1982)

    Article  Google Scholar 

  8. E.J. Wu, G. Ceder, Computational investigation of dielectric absorption at microwave frequencies in binary oxides. J. Appl. Phys. 89, 5630 (2001)

    Article  Google Scholar 

  9. E.H. Bogardus, Third-order elastic constants of Ge, MgO, and fused SiO\(_2\). J. Appl. Phys. 36, 2504 (1965)

    Article  Google Scholar 

  10. P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994)

    Article  Google Scholar 

  11. R.H. Lyddane, R.G. Sachs, E. Teller, On the polar vibrations of alkali halides. Phys. Rev. 59, 673 (1941)

    Article  Google Scholar 

  12. C. Zuccaro et al., Microwave absorption in single crystals of lanthanum aluminate. J. Appl. Phys. 82, 5695 (1997)

    Article  Google Scholar 

  13. T. Shimada et al., Intrinsic microwave dielectric loss of lanthanum aluminate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2243 (2010)

    Article  Google Scholar 

  14. B. Montanari, N.M. Harrison, Lattice dynamics of TiO\(_2\) rutile: influence of gradient corrections in density functional calculations. Chem. Phys. Lett. 364, 528 (2002)

    Article  Google Scholar 

  15. R. Fletcher, Practical Methods of Optimization (Wiley, New York, 2013)

    Google Scholar 

  16. S.C. Abrahams, J.L. Bernstein, Rutile: normal probability plot analysis and accurate measurement of crystal structure. J. Chem. Phys. 55, 3206 (1971)

    Article  Google Scholar 

  17. J.K. Burdett et al., Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 109, 3639 (1987)

    Article  Google Scholar 

  18. C. Lee, P. Ghosez, X. Gonze, Lattice dynamics and dielectric properties of incipient ferroelectric TiO\(_2\) rutile. Phys. Rev. B 50, 13379 (1994)

    Article  Google Scholar 

  19. M. Ramamoorthy, R.D. King-Smith, D. Vanderbilt, First-principles calculations of the energetics of stoichiometric TiO\(_2\) surfaces. Phys. Rev. B 49, 7709 (1994)

    Article  Google Scholar 

  20. K.M. Glassford et al., Electronic and structural properties of TiO\(_2\) in the rutile structure. Solid State Commun. 76, 635 (1990)

    Article  Google Scholar 

  21. K.M. Glassford, J.R. Chelikowsky, Optical properties of titanium dioxide in the rutile structure. Phys. Rev. B 45, 3874 (1992)

    Article  Google Scholar 

  22. K.M. Glassford, J.R. Chelikowsky, Structural and electronic properties of titanium dioxide. Phys. Rev. B 46, 1284 (1992)

    Article  Google Scholar 

  23. D.C. Allan, M.P. Teter, Local density approximation total energy calculations for silica and titania structure and defects. J. Am. Ceram. Soc. 73, 3247 (1990)

    Article  Google Scholar 

  24. J.G. Traylor et al., Lattice dynamics of rutile. Phys. Rev. B 3, 3457 (1971)

    Article  Google Scholar 

  25. J. Krupka et al., Dielectric properties of single crystals of Al\(_2\)O\(_3\), LaAlO\(_3\), NdGaO\(_3\), SrTiO\(_3\) and MgO at cryogenic temperatures. IEEE Trans. Microw. Theory Tech. 42, 1886 (1994)

    Article  Google Scholar 

  26. J. Krupka et al., Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Meas. Sci. Technol. 10, 387 (1999)

    Article  Google Scholar 

  27. M.E. Tobar et al., High-Q sapphire-rutile frequency-temperature compensated microwave dielectric resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 830 (1998)

    Article  Google Scholar 

  28. M.E. Tobar et al., High-Q factor frequency-temperature compensated sapphire Bragg distributed resonator. Electron. Lett. 39, 293 (2003)

    Article  Google Scholar 

  29. W.E. Lee, K.P.D. Lagerlof, Structural and electron diffraction data for sapphire (\(\alpha \)-Al\(_2\)O\(_3\)). J. Electron Microsc. Tech. 2, 247 (1985)

    Article  Google Scholar 

  30. C. Wolverton, K.C. Hass, Phase stability and structure of spinel-based transition aluminas. Phys. Rev. B 63, 024102 (2000)

    Article  Google Scholar 

  31. Z. Łodziana, K. Parliński, Dynamical stability of the \(\alpha \) and \(\theta \) phases of alumina. Phys. Rev. B 67, 174106 (2003)

    Article  Google Scholar 

  32. R. Heid, D. Strauch, K.-P. Bohnen, Ab initio lattice dynamics of sapphire. Phys. Rev. B 61, 8625 (2000)

    Article  Google Scholar 

  33. A.S. Barker Jr., Infrared lattice vibrations and dielectric dispersion in corundum. Phys. Rev. 132, 1474 (1963)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Breeze .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Breeze, J. (2016). Harmonic Properties of Metal Oxide Dielectrics. In: Temperature and Frequency Dependence of Complex Permittivity in Metal Oxide Dielectrics: Theory, Modelling and Measurement. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44547-2_5

Download citation

Publish with us

Policies and ethics