Advertisement

Harmonic Properties of Metal Oxide Dielectrics

  • Jonathan BreezeEmail author
Chapter
  • 489 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The advent of quantum mechanical codes implementing density functional theory within the local density approximation for periodic systems has made it possible to predict their properties ab-initio, without the use of empirical data. This chapter will use these invaluable tools to calculate some of the properties of microwave dielectric ceramics. Calculation of the complex permittivity of a material at microwave frequencies requires knowledge of harmonic properties such as phonon eigenfrequencies, Born effective charges and electronic permittivity. This chapter will report detailed modelling of the crystal structure and harmonic lattice dynamical properties of MgO, LaAlO\(_3\), TiO\(_2\) and Al\(_2\)O\(_3\) using density functional perturbation theory (DFPT). For each material the convergence of the ground-state energy with respect to plane-wave cut-off energy and electronic k-point sampling will be investigated. The equilibrium crystal structure and lattice parameters will then be found by minimization of the total energy with respect to lattice parameter and the ionic positions. Phonon dispersion relations and the response to electric fields will be used to calculate the low-frequency permittivity of each material and then compared to low-temperature experimental data.

Keywords

Local Density Approximation Optical Phonon Mode Phonon Dispersion Relation Primitive Unit Cell Density Functional Perturbation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009)CrossRefGoogle Scholar
  2. 2.
    J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981)CrossRefGoogle Scholar
  3. 3.
    N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991)CrossRefGoogle Scholar
  4. 4.
    O. Schütt et al., Ab initio lattice dynamics and charge fluctuations in alkaline-earth oxides. Phys. Rev. B 50, 3746 (1994)CrossRefGoogle Scholar
  5. 5.
    M.J.L. Sangster, G. Peckham, D.H. Saunderson, Lattice dynamics of magnesium oxide. J. Phys. C 3, 1026 (1970)CrossRefGoogle Scholar
  6. 6.
    H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)CrossRefGoogle Scholar
  7. 7.
    M. Sparks, D.F. King, D.L. Mills, Simple theory of microwave absorption in alkali halides. Phys. Rev. B 26, 6987 (1982)CrossRefGoogle Scholar
  8. 8.
    E.J. Wu, G. Ceder, Computational investigation of dielectric absorption at microwave frequencies in binary oxides. J. Appl. Phys. 89, 5630 (2001)CrossRefGoogle Scholar
  9. 9.
    E.H. Bogardus, Third-order elastic constants of Ge, MgO, and fused SiO\(_2\). J. Appl. Phys. 36, 2504 (1965)CrossRefGoogle Scholar
  10. 10.
    P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994)CrossRefGoogle Scholar
  11. 11.
    R.H. Lyddane, R.G. Sachs, E. Teller, On the polar vibrations of alkali halides. Phys. Rev. 59, 673 (1941)CrossRefGoogle Scholar
  12. 12.
    C. Zuccaro et al., Microwave absorption in single crystals of lanthanum aluminate. J. Appl. Phys. 82, 5695 (1997)CrossRefGoogle Scholar
  13. 13.
    T. Shimada et al., Intrinsic microwave dielectric loss of lanthanum aluminate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2243 (2010)CrossRefGoogle Scholar
  14. 14.
    B. Montanari, N.M. Harrison, Lattice dynamics of TiO\(_2\) rutile: influence of gradient corrections in density functional calculations. Chem. Phys. Lett. 364, 528 (2002)CrossRefGoogle Scholar
  15. 15.
    R. Fletcher, Practical Methods of Optimization (Wiley, New York, 2013)Google Scholar
  16. 16.
    S.C. Abrahams, J.L. Bernstein, Rutile: normal probability plot analysis and accurate measurement of crystal structure. J. Chem. Phys. 55, 3206 (1971)CrossRefGoogle Scholar
  17. 17.
    J.K. Burdett et al., Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 109, 3639 (1987)CrossRefGoogle Scholar
  18. 18.
    C. Lee, P. Ghosez, X. Gonze, Lattice dynamics and dielectric properties of incipient ferroelectric TiO\(_2\) rutile. Phys. Rev. B 50, 13379 (1994)CrossRefGoogle Scholar
  19. 19.
    M. Ramamoorthy, R.D. King-Smith, D. Vanderbilt, First-principles calculations of the energetics of stoichiometric TiO\(_2\) surfaces. Phys. Rev. B 49, 7709 (1994)CrossRefGoogle Scholar
  20. 20.
    K.M. Glassford et al., Electronic and structural properties of TiO\(_2\) in the rutile structure. Solid State Commun. 76, 635 (1990)CrossRefGoogle Scholar
  21. 21.
    K.M. Glassford, J.R. Chelikowsky, Optical properties of titanium dioxide in the rutile structure. Phys. Rev. B 45, 3874 (1992)CrossRefGoogle Scholar
  22. 22.
    K.M. Glassford, J.R. Chelikowsky, Structural and electronic properties of titanium dioxide. Phys. Rev. B 46, 1284 (1992)CrossRefGoogle Scholar
  23. 23.
    D.C. Allan, M.P. Teter, Local density approximation total energy calculations for silica and titania structure and defects. J. Am. Ceram. Soc. 73, 3247 (1990)CrossRefGoogle Scholar
  24. 24.
    J.G. Traylor et al., Lattice dynamics of rutile. Phys. Rev. B 3, 3457 (1971)CrossRefGoogle Scholar
  25. 25.
    J. Krupka et al., Dielectric properties of single crystals of Al\(_2\)O\(_3\), LaAlO\(_3\), NdGaO\(_3\), SrTiO\(_3\) and MgO at cryogenic temperatures. IEEE Trans. Microw. Theory Tech. 42, 1886 (1994)CrossRefGoogle Scholar
  26. 26.
    J. Krupka et al., Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Meas. Sci. Technol. 10, 387 (1999)CrossRefGoogle Scholar
  27. 27.
    M.E. Tobar et al., High-Q sapphire-rutile frequency-temperature compensated microwave dielectric resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 830 (1998)CrossRefGoogle Scholar
  28. 28.
    M.E. Tobar et al., High-Q factor frequency-temperature compensated sapphire Bragg distributed resonator. Electron. Lett. 39, 293 (2003)CrossRefGoogle Scholar
  29. 29.
    W.E. Lee, K.P.D. Lagerlof, Structural and electron diffraction data for sapphire (\(\alpha \)-Al\(_2\)O\(_3\)). J. Electron Microsc. Tech. 2, 247 (1985)CrossRefGoogle Scholar
  30. 30.
    C. Wolverton, K.C. Hass, Phase stability and structure of spinel-based transition aluminas. Phys. Rev. B 63, 024102 (2000)CrossRefGoogle Scholar
  31. 31.
    Z. Łodziana, K. Parliński, Dynamical stability of the \(\alpha \) and \(\theta \) phases of alumina. Phys. Rev. B 67, 174106 (2003)CrossRefGoogle Scholar
  32. 32.
    R. Heid, D. Strauch, K.-P. Bohnen, Ab initio lattice dynamics of sapphire. Phys. Rev. B 61, 8625 (2000)CrossRefGoogle Scholar
  33. 33.
    A.S. Barker Jr., Infrared lattice vibrations and dielectric dispersion in corundum. Phys. Rev. 132, 1474 (1963)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations