Measurement of Dielectric Properties

  • Jonathan BreezeEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter reports on the apparatus used to measure the dielectric properties of microwave dielectrics as a function of temperature, consisting of a shielded dielectric resonator mounted upon the cold head of a cryogenic closed-cycle refrigerator.


Resonant Frequency Loss Tangent Relative Permittivity Surface Resistance Dielectric Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Krupka et al., Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Meas. Sci. Technol. 10, 387 (1999)CrossRefGoogle Scholar
  2. 2.
    J. Breeze et al., Do Grain Boundaries Affect Microwave Dielectric Loss in Oxides? J. Am. Ceram. Soc. 92, 671 (2009)CrossRefGoogle Scholar
  3. 3.
    V.L. Gurevich, Dielectric losses in crystals. Fizika Tverdogo Tela 21, 3453 (1979)Google Scholar
  4. 4.
    V.L. Gurevich, A.K. Tagantsev, Intrinsic dielectric loss in crystals: low temperatures. Sov. Phys. JETP 64, 142 (1986)Google Scholar
  5. 5.
    Gurevich, V.L.: Transport in Phonon Systems, 1st ed. (North-Holland Physics Publishing, 1986)Google Scholar
  6. 6.
    V.L. Gurevich, A.K. Tagantsev, Intrinsic dielectric loss in crystals. Adv. Phys. 40, 719 (1991)CrossRefGoogle Scholar
  7. 7.
    A.K. Tagantsev, Effect of weak electric field on dielectric losses in centrally symmetric ferroelectric materials of displacement type. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 77, 1993 (1979)Google Scholar
  8. 8.
    A.K. Tagantsev, Dielectric losses in displacive ferroelectrics. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 86, 2215 (1984)Google Scholar
  9. 9.
    A.K. Tagantsev, Weak ferroelectrics. Ferroelectrics 79, 57 (1988)CrossRefGoogle Scholar
  10. 10.
    A.K. Tagantsev, J. Petzelt, N. Setter, Relation between intrinsic microwave and submillimeter losses and permitivity in dielectrics. Solid State Commun. 87, 1117 (1993)CrossRefGoogle Scholar
  11. 11.
    V.B. Braginsky, V.S. Ilchenko, K.S. Bagdassarov, Experimental observation of fundamental microwave absorption in high-quality dielectric crystals. Phys. Lett. A 120, 300 (1987)CrossRefGoogle Scholar
  12. 12.
    N.M. Alford et al., Dielectric loss of oxide single crystals and polycrystalline analogues from 10 to 320 K. J. Eur. Ceram. Soc. 21, 2605 (2001)CrossRefGoogle Scholar
  13. 13.
    C. Zuccaro et al., Microwave absorption in single crystals of lanthanum aluminate. J. Appl. Phys. 82, 5695 (1997)CrossRefGoogle Scholar
  14. 14.
    T. Zychowicz, J. Krupka, M. Tobar, Whispering gallery modes in hollow spherical dielectric resonators. J. Eur. Ceram. Soc. 26, 2193 (2006)CrossRefGoogle Scholar
  15. 15.
    J. Mazierska et al., Precise microwave characterization of MgO substrates for HTS circuits with superconducting post dielectric resonator. Supercond. Sci. Technol. 18, 18 (2005)CrossRefGoogle Scholar
  16. 16.
    J. Krupka et al., Dielectric properties of single crystals of Al\(_2\)O\(_3\), LaAlO\(_3\), NdGaO\(_3\), SrTiO\(_3\) and MgO at cryogenic temperatures. IEEE Trans. Microw. Theory Tech. 42, 1886 (1994)CrossRefGoogle Scholar
  17. 17.
    J.C. Mage et al., Microwave propertied of MgO single crystals computed from the IR, and measured with a resonator technique. Int. J. Infrared Millim. Waves 15, 1189 (1994)CrossRefGoogle Scholar
  18. 18.
    T. Shimada et al., Intrinsic microwave dielectric loss of lanthanum aluminate. IEEE Trans. Ultrason. Ferroelectr. Frequency Control 57, 2243 (2010)CrossRefGoogle Scholar
  19. 19.
    H.M. Schicke, Quasi-Degenerated modes in high-\(\epsilon \) dielectric cavities. J. Appl. Phys. 24, 187 (1953)CrossRefGoogle Scholar
  20. 20.
    A. Okaya, The Rutile microwave resonator. Proc. IRE 48, 1921 (1960)Google Scholar
  21. 21.
    A. Okaya, L.F. Barash, The Rutile microwave resonator. Proc. IRE 50, 2081 (1962)CrossRefGoogle Scholar
  22. 22.
    S.B. Cohn, Microwave bandpass filters containing high Q dielectric resonators. IEEE Trans. Microw. Theory Tech. 16, 218 (1968)CrossRefGoogle Scholar
  23. 23.
    M.E. Tobar et al., Anisotropic complex permittivity measurements of mono-crystalline rutile between 10 and 300 K. J. Appl. Phys. 83, 1604 (1998)CrossRefGoogle Scholar
  24. 24.
    A. Templeton et al., Microwave dielectric loss of titanium oxide. J. Am. Ceram. Soc. 83, 95 (2000)CrossRefGoogle Scholar
  25. 25.
    D.J. Masse et al., A new low-loss high-k temperature-compensated dielectric for microwave applications. Proc. IEEE 59, 1628 (1971)CrossRefGoogle Scholar
  26. 26.
    J.K. Plourde et al., Ba\(_2\)Ti\(_9\)O\(_{20}\) as a microwave dielectric resonator. J. Am. Ceram. Soc. 58, 418 (1975)CrossRefGoogle Scholar
  27. 27.
    M.E. Tobar et al., High-Q sapphire-rutile frequency-temperature compensated microwave dielectric resonators. IEEE Trans. Ultrason. Ferroelectr. Frequency Control 45, 830 (1998)CrossRefGoogle Scholar
  28. 28.
    M.E. Tobar et al., High-Q factor frequency-temperature compensated sapphire Bragg distributed resonator. Electr. Lett. 39, 293 (2003)CrossRefGoogle Scholar
  29. 29.
    J. Breeze et al., Layered Al\(_2\)O\(_3\)-TiO\(_2\) composite dielectric resonators. Electr. Lett. 36, 883 (2000)CrossRefGoogle Scholar
  30. 30.
    J. Breeze et al., Temperature-stable and high Q-factor TiO\(_2\) Bragg reflector resonator. Appl. Phys. Lett. 94, 082906 (2009)CrossRefGoogle Scholar
  31. 31.
    P.Y. Bourgeois et al., Maser oscillation in a whispering-gallery-mode microwave resonator. Appl. Phys. Lett. 87, 224104 (2005)CrossRefGoogle Scholar
  32. 32.
    M. Oxborrow, J.D. Breeze, N.M. Alford, Room-temperature solid-state maser. Nature 488, 353 (2012)CrossRefGoogle Scholar
  33. 33.
    C.J. Maggiore et al., Low-loss microwave cavity using layered dielectric materials. Appl. Phys. Lett. 64, 1451 (1994)CrossRefGoogle Scholar
  34. 34.
    C.A. Flory, R.C. Taber, High performance distributed Bragg reflector microwave resonator. IEEE Trans. Ultrason. Ferroelectr. Frequency Control 44, 486 (1997)CrossRefGoogle Scholar
  35. 35.
    C.A. Flory, H.L. Ko, Microwave oscillators incorporating high performance distributed Bragg reflector microwave resonators. IEEE Trans. Ultrason. Ferroelectr. Frequency Control 45, 824 (1998)CrossRefGoogle Scholar
  36. 36.
    J. Breeze, J. Krupka, N.M. Alford, Enhanced quality factors in aperiodic reflector resonator. Appl. Phys. Lett. 91, 152902 (2007)CrossRefGoogle Scholar
  37. 37.
    J. Breeze, M. Oxborrow, N.M. Alford, Better than Bragg: Optimizing the quality factor of resonators with aperiodic dielectric reflectors. Appl. Phys. Lett. 99, 113515 (2011)CrossRefGoogle Scholar
  38. 38.
    N.M. Alford, S.J. Penn, Sintered alumina with low dielectric loss. J. Appl. Phys. 80, 5895 (1996)CrossRefGoogle Scholar
  39. 39.
    J.D. Breeze, X. Aupi, N.M. Alford, Ultralow loss polycrystalline alumina. Appl. Phys. Lett. 81, 5021 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations