Skip to main content

Measurement of Dielectric Properties

  • Chapter
  • First Online:
  • 864 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter reports on the apparatus used to measure the dielectric properties of microwave dielectrics as a function of temperature, consisting of a shielded dielectric resonator mounted upon the cold head of a cryogenic closed-cycle refrigerator.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Krupka et al., Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Meas. Sci. Technol. 10, 387 (1999)

    Article  Google Scholar 

  2. J. Breeze et al., Do Grain Boundaries Affect Microwave Dielectric Loss in Oxides? J. Am. Ceram. Soc. 92, 671 (2009)

    Article  Google Scholar 

  3. V.L. Gurevich, Dielectric losses in crystals. Fizika Tverdogo Tela 21, 3453 (1979)

    Google Scholar 

  4. V.L. Gurevich, A.K. Tagantsev, Intrinsic dielectric loss in crystals: low temperatures. Sov. Phys. JETP 64, 142 (1986)

    Google Scholar 

  5. Gurevich, V.L.: Transport in Phonon Systems, 1st ed. (North-Holland Physics Publishing, 1986)

    Google Scholar 

  6. V.L. Gurevich, A.K. Tagantsev, Intrinsic dielectric loss in crystals. Adv. Phys. 40, 719 (1991)

    Article  Google Scholar 

  7. A.K. Tagantsev, Effect of weak electric field on dielectric losses in centrally symmetric ferroelectric materials of displacement type. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 77, 1993 (1979)

    Google Scholar 

  8. A.K. Tagantsev, Dielectric losses in displacive ferroelectrics. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 86, 2215 (1984)

    Google Scholar 

  9. A.K. Tagantsev, Weak ferroelectrics. Ferroelectrics 79, 57 (1988)

    Article  Google Scholar 

  10. A.K. Tagantsev, J. Petzelt, N. Setter, Relation between intrinsic microwave and submillimeter losses and permitivity in dielectrics. Solid State Commun. 87, 1117 (1993)

    Article  Google Scholar 

  11. V.B. Braginsky, V.S. Ilchenko, K.S. Bagdassarov, Experimental observation of fundamental microwave absorption in high-quality dielectric crystals. Phys. Lett. A 120, 300 (1987)

    Article  Google Scholar 

  12. N.M. Alford et al., Dielectric loss of oxide single crystals and polycrystalline analogues from 10 to 320 K. J. Eur. Ceram. Soc. 21, 2605 (2001)

    Article  Google Scholar 

  13. C. Zuccaro et al., Microwave absorption in single crystals of lanthanum aluminate. J. Appl. Phys. 82, 5695 (1997)

    Article  Google Scholar 

  14. T. Zychowicz, J. Krupka, M. Tobar, Whispering gallery modes in hollow spherical dielectric resonators. J. Eur. Ceram. Soc. 26, 2193 (2006)

    Article  Google Scholar 

  15. J. Mazierska et al., Precise microwave characterization of MgO substrates for HTS circuits with superconducting post dielectric resonator. Supercond. Sci. Technol. 18, 18 (2005)

    Article  Google Scholar 

  16. J. Krupka et al., Dielectric properties of single crystals of Al\(_2\)O\(_3\), LaAlO\(_3\), NdGaO\(_3\), SrTiO\(_3\) and MgO at cryogenic temperatures. IEEE Trans. Microw. Theory Tech. 42, 1886 (1994)

    Article  Google Scholar 

  17. J.C. Mage et al., Microwave propertied of MgO single crystals computed from the IR, and measured with a resonator technique. Int. J. Infrared Millim. Waves 15, 1189 (1994)

    Article  Google Scholar 

  18. T. Shimada et al., Intrinsic microwave dielectric loss of lanthanum aluminate. IEEE Trans. Ultrason. Ferroelectr. Frequency Control 57, 2243 (2010)

    Article  Google Scholar 

  19. H.M. Schicke, Quasi-Degenerated modes in high-\(\epsilon \) dielectric cavities. J. Appl. Phys. 24, 187 (1953)

    Article  Google Scholar 

  20. A. Okaya, The Rutile microwave resonator. Proc. IRE 48, 1921 (1960)

    Google Scholar 

  21. A. Okaya, L.F. Barash, The Rutile microwave resonator. Proc. IRE 50, 2081 (1962)

    Article  Google Scholar 

  22. S.B. Cohn, Microwave bandpass filters containing high Q dielectric resonators. IEEE Trans. Microw. Theory Tech. 16, 218 (1968)

    Article  Google Scholar 

  23. M.E. Tobar et al., Anisotropic complex permittivity measurements of mono-crystalline rutile between 10 and 300 K. J. Appl. Phys. 83, 1604 (1998)

    Article  Google Scholar 

  24. A. Templeton et al., Microwave dielectric loss of titanium oxide. J. Am. Ceram. Soc. 83, 95 (2000)

    Article  Google Scholar 

  25. D.J. Masse et al., A new low-loss high-k temperature-compensated dielectric for microwave applications. Proc. IEEE 59, 1628 (1971)

    Article  Google Scholar 

  26. J.K. Plourde et al., Ba\(_2\)Ti\(_9\)O\(_{20}\) as a microwave dielectric resonator. J. Am. Ceram. Soc. 58, 418 (1975)

    Article  Google Scholar 

  27. M.E. Tobar et al., High-Q sapphire-rutile frequency-temperature compensated microwave dielectric resonators. IEEE Trans. Ultrason. Ferroelectr. Frequency Control 45, 830 (1998)

    Article  Google Scholar 

  28. M.E. Tobar et al., High-Q factor frequency-temperature compensated sapphire Bragg distributed resonator. Electr. Lett. 39, 293 (2003)

    Article  Google Scholar 

  29. J. Breeze et al., Layered Al\(_2\)O\(_3\)-TiO\(_2\) composite dielectric resonators. Electr. Lett. 36, 883 (2000)

    Article  Google Scholar 

  30. J. Breeze et al., Temperature-stable and high Q-factor TiO\(_2\) Bragg reflector resonator. Appl. Phys. Lett. 94, 082906 (2009)

    Article  Google Scholar 

  31. P.Y. Bourgeois et al., Maser oscillation in a whispering-gallery-mode microwave resonator. Appl. Phys. Lett. 87, 224104 (2005)

    Article  Google Scholar 

  32. M. Oxborrow, J.D. Breeze, N.M. Alford, Room-temperature solid-state maser. Nature 488, 353 (2012)

    Article  Google Scholar 

  33. C.J. Maggiore et al., Low-loss microwave cavity using layered dielectric materials. Appl. Phys. Lett. 64, 1451 (1994)

    Article  Google Scholar 

  34. C.A. Flory, R.C. Taber, High performance distributed Bragg reflector microwave resonator. IEEE Trans. Ultrason. Ferroelectr. Frequency Control 44, 486 (1997)

    Article  Google Scholar 

  35. C.A. Flory, H.L. Ko, Microwave oscillators incorporating high performance distributed Bragg reflector microwave resonators. IEEE Trans. Ultrason. Ferroelectr. Frequency Control 45, 824 (1998)

    Article  Google Scholar 

  36. J. Breeze, J. Krupka, N.M. Alford, Enhanced quality factors in aperiodic reflector resonator. Appl. Phys. Lett. 91, 152902 (2007)

    Article  Google Scholar 

  37. J. Breeze, M. Oxborrow, N.M. Alford, Better than Bragg: Optimizing the quality factor of resonators with aperiodic dielectric reflectors. Appl. Phys. Lett. 99, 113515 (2011)

    Article  Google Scholar 

  38. N.M. Alford, S.J. Penn, Sintered alumina with low dielectric loss. J. Appl. Phys. 80, 5895 (1996)

    Article  Google Scholar 

  39. J.D. Breeze, X. Aupi, N.M. Alford, Ultralow loss polycrystalline alumina. Appl. Phys. Lett. 81, 5021 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Breeze .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Breeze, J. (2016). Measurement of Dielectric Properties. In: Temperature and Frequency Dependence of Complex Permittivity in Metal Oxide Dielectrics: Theory, Modelling and Measurement. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44547-2_3

Download citation

Publish with us

Policies and ethics