Advertisement

Introduction

  • Jonathan BreezeEmail author
Chapter
  • 486 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

On 12 December, 1901 the age of wireless telecommunications began in earnest when Guglielmo Marconi transmitted the first transatlantic radio message from Poldhu in Cornwall, England to St. John’s in Newfoundland, Canada. This pioneering form of communication has had a profound impact on many aspects of our way of life. A century later, radio and microwave communications have undergone a transformation that has resulted in them becoming ubiquitous. In recent decades, our use of the radio and microwave frequency bands of the electromagnetic spectrum has increased enormously. From 1 kHz to 100 GHz, the spectrum has been allocated and exploited by applications in radar, metrology, astronomy, telecommunications, radiometry, medicine and security. In the late 1980s, mobile personal telephones became available to the public and satellite television made it possible to watch hundreds of channels broadcast all over the world. Almost everyone in reasonably developed countries now own a mobile telephone and in developing countries, mobile and satellite telecommunications have improved quality of life in areas where land-based networks required infeasibly large financial investment in infrastructure.

Keywords

Global Navigation Satellite System Global Navigation Satellite System Apply Physic Letter Dielectric Resonator Microwave Dielectric Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.D. Richtmyer, Dielectric Resonators. J. Appl. Phys. 10, 391 (1939)CrossRefGoogle Scholar
  2. 2.
    H.M. O’Bryan, J. Thompson, J.K. Plourde, A new BaO-TiO\(_2\) compound with temperature-stable high permittivity and low microwave loss. J. Am. Ceram. Soc. 57, 450 (1974)CrossRefGoogle Scholar
  3. 3.
    J.K. Plourde et al., Ba\(_2\)Ti\(_9\)O\(_{20}\) as a microwave dielectric resonator. J. Am. Ceram. Soc. 58, 418 (1975)CrossRefGoogle Scholar
  4. 4.
    B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microwave Theory Tech. 8, 402 (1960)CrossRefGoogle Scholar
  5. 5.
    L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media, 2nd edn. (Butterworth-Heinemann, Oxford, 1984)Google Scholar
  6. 6.
    P. Debye, Der Lichtdruck auf Kugeln von Beliebigem Material. Annalen der Physik 335, 57 (1909)CrossRefGoogle Scholar
  7. 7.
    P. Debye, Zur theorie der Spezifischen Wärmen. Annalen der Physik 344, 789 (1912)CrossRefGoogle Scholar
  8. 8.
    P.J.W. Debye, Zur Theorie der Anomalen Dispersion im Gebiete der Langwelligen Elektrischen Strahlung. Berichte Deutschen Physikalischen Gesellschaft 15, 777 (1913)Google Scholar
  9. 9.
    P. Debye, Vortrage uber die kinetische Theorie der Materie und der Elektrizität, vol. 6 (Teubner, Leipzig, 1914)Google Scholar
  10. 10.
    P. Debye, Polar Molecules (Dover, Mineola, 1929)Google Scholar
  11. 11.
    H. Fröhlich, Theory of Dielectrics, 2nd edn. (Oxford University Press, Oxford, 1958)Google Scholar
  12. 12.
    A.D.B. Woods, W. Cochran, B.N. Brockhouse, Lattice dynamics of alkaline halides crystals. Phys. Rev. 119, 980 (1960)CrossRefGoogle Scholar
  13. 13.
    R. Stolen, K. Dransfeld, Far-infrared lattice absorption in alkali halides crystals. Phys. Rev. 139, A1295 (1965)CrossRefGoogle Scholar
  14. 14.
    J.E. Eldridge, K.A. Kembry, Further measurements and calculations of the far-infrared anharmonic optical properties of KI between 12 and 300 K. Phys. Rev. B 8, 746 (1973)CrossRefGoogle Scholar
  15. 15.
    B.D. Silverman, Microwave absorption in cubic strontium titanate. Phys. Rev. 125, 1921 (1962)CrossRefGoogle Scholar
  16. 16.
    L.J. Sham, Equilibrium approach to second sound in solids. Phys. Rev. 156, 494 (1967)CrossRefGoogle Scholar
  17. 17.
    M. Sparks, L.J. Sham, Theory of multiphonon absorption in insulating crystals. Phys. Rev. B 8, 3037 (1973)CrossRefGoogle Scholar
  18. 18.
    M. Sparks, D.F. King, D.L. Mills, Simple theory of microwave absorption in alkali halides. Phys. Rev. B 26, 6987 (1982)CrossRefGoogle Scholar
  19. 19.
    K.R. Subbaswamy, D.L. Mills, Theory of microwave absorption in wide-band-gap insulators: the role of thermal phonon lifetimes. Phys. Rev. B 33, 4213 (1986)CrossRefGoogle Scholar
  20. 20.
    R.A. Cowley, Lattice dynamics of an anharmonic crystal. Adv. Phys. 12, 421 (1963)CrossRefGoogle Scholar
  21. 21.
    G.J. Coombs, R.A. Cowley, Paraelectric, piezoelectric and pyroelectric crystals: I. Dielectric properties. J. Phys. C: Solid State Phys. 6, 121 (1973)CrossRefGoogle Scholar
  22. 22.
    V.L. Gurevich, Dielectric losses in crystals. Fizika Tverdogo Tela 21, 3453 (1979)Google Scholar
  23. 23.
    V.L. Gurevich, A.K. Tagantsev, Intrinsic dielectric loss in crystals: low temperatures. Sov. Phys. JETP 64, 142 (1986)Google Scholar
  24. 24.
    V.L. Gurevich, Transport in Phonon Systems, 1st edn. (North-Holland Physics Publishing, Amsterdam, 1986)Google Scholar
  25. 25.
    V.L. Gurevich, A.K. Tagantsev, Intrinsic dielectric loss in crystals. Adv. Phys. 40, 719 (1991)CrossRefGoogle Scholar
  26. 26.
    C. Herring, Effect of time-reversal symmetry on energy bands of crystals. Phys. Rev. 52, 361 (1937)CrossRefGoogle Scholar
  27. 27.
    C. Herring, Accidental degeneracy in energy bands of crystals. Phys. Rev. 52, 365 (1937)CrossRefGoogle Scholar
  28. 28.
    C. Herring, Role of low-energy phonons in thermal conduction. Phys. Rev. 95, 954 (1954)CrossRefGoogle Scholar
  29. 29.
    V.B. Braginsky, V.S. Ilchenko, K.S. Bagdassarov, Experimental observation of fundamental microwave absorption in high-quality dielectric crystals. Phys. Lett. A 120, 300 (1987)CrossRefGoogle Scholar
  30. 30.
    N.M. Alford et al., Dielectric loss of oxide single crystals and polycrystalline analogues from 10 to 320 K. J. Eur. Ceram. Soc. 21, 2605 (2001)CrossRefGoogle Scholar
  31. 31.
    A.K. Tagantsev, Effect of weak electric field on dielectric losses in centrally symmetric ferroelectric materials of displacement type. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 77, 1993 (1979)Google Scholar
  32. 32.
    A.K. Tagantsev, Dielectric losses in displacive ferroelectrics. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 86, 2215 (1984)Google Scholar
  33. 33.
    A.K. Tagantsev, Weak ferroelectrics. Ferroelectrics 79, 57 (1988)CrossRefGoogle Scholar
  34. 34.
    A.K. Tagantsev, J. Petzelt, N. Setter, Relation between intrinsic microwave and submillimeter losses and permitivity in dielectrics. Solid State Commun. 87, 1117 (1993)CrossRefGoogle Scholar
  35. 35.
    J. Deppe et al., Molecular-dynamics study of the lattice-vibration contribution to the frequency-dependent dielectric constant of lithium iodide. Phys. Rev. B 45, 5687 (1992)CrossRefGoogle Scholar
  36. 36.
    A. Debernardi, S. Baroni, E. Molarini, Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys. Rev. Lett. 75, 1819 (1995)CrossRefGoogle Scholar
  37. 37.
    A. Debernardi, M. Cardona, Isotopic effects on the lattice constant in compound semiconductors by perturbation theory: an ab initio calculation. Phys. Rev. B 54, 11305 (1996)CrossRefGoogle Scholar
  38. 38.
    A. Debernardi, Phonon linewidth in III-V semiconductors from density-functional perturbation theory. Phys. Rev. B 57, 12847 (1998)CrossRefGoogle Scholar
  39. 39.
    A. Debernardi, M. Cardona, First principles calculation of the real part of phonon self energy in compound semiconductors. Phys. B: Condens. Matter 263, 687 (1999)CrossRefGoogle Scholar
  40. 40.
    G. Lang et al., Anharmonic line shift and linewidth of the Raman mode in covalent semiconductors. Phys. Rev. B 59, 6182 (1999)CrossRefGoogle Scholar
  41. 41.
    G. Deinzer, G. Birner, D. Strauch, Ab initio calculation of the linewidth of various modes in germanium and silicon. Phys. Rev. B 67, 144304 (2003)CrossRefGoogle Scholar
  42. 42.
    G. Deinzer et al., Intrinsic lifetimes and anharmonic frequency shifts of long-wavelength optical phonons in polar crystals. Phys. Rev. B 69, 014304 (2004)CrossRefGoogle Scholar
  43. 43.
    H.M. Lawler, E.L. Shirley, Anharmonic effects on infrared spectra of GaAs and GaP: first-principles calculations. Phys. Rev. B 70, 245209 (2004)CrossRefGoogle Scholar
  44. 44.
    E.L. Shirley, H.M. Lawler, Two-phonon infrared spectra of Si and Ge: calculating and assigning features. Phys. Rev. B 76, 054116 (2007)CrossRefGoogle Scholar
  45. 45.
    E.J. Wu, G. Ceder, Computational investigation of dielectric absorption at microwave frequencies in binary oxides. J. Appl. Phys. 89, 5630 (2001)CrossRefGoogle Scholar
  46. 46.
    N.A. Shtin, J.M.L. Romero, E. Prokhorov, Theory of fundamental microwave absorption in sapphire (\(\alpha \)-Al\(_2\)O\(_3\)). J. Appl. Phys. 106, 104115 (2009)CrossRefGoogle Scholar
  47. 47.
    X. Aupi et al., Microwave dielectric loss in oxides: theory and experiment. J. Appl. Phys. 95, 2639 (2004)CrossRefGoogle Scholar
  48. 48.
    T. Shimada et al., Intrinsic microwave dielectric loss of lanthanum aluminate. IEEE Trans. Ultrason., Ferroelectr. Freq. Control 57, 2243 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations