Skip to main content

Foundations of Pharmacodynamic Systems Analysis

  • Chapter
  • First Online:

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 23))

Abstract

The pillars of pharmacodynamic modeling are the pharmacokinetics of the drug, the nature of the pharmacology that underlies drug interactions with their targets, and the physiology of the system considering molecular to whole body levels of organization and functioning. This chapter provides a general assessment of the fundamental components and some interactions of each of these pillars indicating how they serve as building blocks for systems models. Key elements of pharmacokinetics include the operation of Fick’s Laws for diffusion and perfusion along with the often nonlinear mechanisms of drug distribution and elimination. Target-binding relationships in pharmacology evolve from the law of mass action producing capacity-limitation in most operative control functions. Mammalian physiology and pathophysiology feature a wide breadth of turnover rates for biological compounds, structures, and functions ranging from rapid electrical signals to lengthy human lifespans, which often determine the rate-limiting process and basic type of model to be applied. Appreciation of the diverse array, mechanisms, and interactions of individual components that comprise the pillars of pharmacodynamics can serve as the foundation for building more complex systems models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The author tells his students that this equation will also predict their future success in pharmacometrics: a function of the combination of brain capacity (IQ), affinity for mathematics, statistics, and computation, and the relevant assimilated information (coursework and studies).

  2. 2.

    Here turnover is generalized to include any process where the response or control factor is affected by production and loss. Some authors consider only basic indirect response models as turnover models.

References

  • Adair GS (1925) The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. J Biol Chem 63:529–545

    CAS  Google Scholar 

  • Ariens EJ, Van Rossum JM, Simonis AM (1957) Affinity, intrinsic activity and drug interactions. Pharmacol Rev 9:218–236

    CAS  PubMed  Google Scholar 

  • Black JW, Leff P (1983) Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 220:141–162

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Gao W, Jusko WJ (2012) Pharmacokinetic/pharmacodynamic modeling of GLP-1 in healthy rats. Pharm Res 29:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Balthasar JP, Jusko WJ (2013) Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokin Pharmacodyn 40:597–607

    Article  CAS  Google Scholar 

  • Chakraborty A, Blum RA, Cutler DL, Jusko WJ (1999) Pharmacoimmunodynamic interactions of IL-10 and prednisone in healthy volunteers. Clin Pharmacol Ther 65:304–318

    Article  CAS  PubMed  Google Scholar 

  • Clark AJ (1933) The mode of action of drugs on cells. Edward Arnold, London

    Google Scholar 

  • Dayneka N, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokin Biopharm 21:457–478

    Article  CAS  Google Scholar 

  • Dutta A, Matsumoto Y, Ebling WF (1996) Is it possible to estimate the parameters of the sigmoid Emax model with truncated data typical of clinical studies? J Pharm Sci 85:232–239

    Article  CAS  PubMed  Google Scholar 

  • Earp J, Krzyzanski W, Chakraborty A, Zamacona MK, Jusko WJ (2004) Assessment of drug interactions relevant to pharmacodynamic indirect response models. J Pharmacokin Pharmacodyn 31:345–380

    Article  CAS  Google Scholar 

  • Earp JC, DuBois DC, Molano DS, Pyszczynski NA, Keller CE, Almon RR, Jusko WJ (2008a) Modeling corticosteroid effects in a rat model of rheumatoid arthritis I: mechanistic disease progression model for the time course of collagen-induced arthritis in Lewis rats. J Pharmacol Exp Ther 326:532–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earp JC, DuBois DC, Molano DS, Pyszczynski NA, Almon RR, Jusko WJ (2008b) Modeling corticosteroid effects in a rat model of rheumatoid arthritis II: mechanistic pharmacodynamic model for dexamethasone effects in Lewis rats with collagen-induced arthritis. J Pharmacol Exp Ther 326:546–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Sukumaran S, DuBois DC, Almon RR, Jusko WJ (2013) Meta-modeling of methylprednisolone effects on glucose regulation in rats. PLoS ONE 8:e81679

    Article  PubMed  PubMed Central  Google Scholar 

  • Fick A (1855) On liquid diffusion. Philos Mag 10:30–39

    Google Scholar 

  • Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20:4713–4721

    Google Scholar 

  • Gaddum JH (1937) The quantitative effects of antagonistic drugs. J Physiol 89:7P–9P

    Google Scholar 

  • Gessner PK (1974) In: Moselli PL, Garattini S, Cohen SN (eds) Drug interactions. Raven Press, New York

    Google Scholar 

  • Goldstein A (1949) The interaction of drugs and plasma proteins. Pharmacol Rev 1:102–165

    Google Scholar 

  • Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond 36:513–585

    Article  Google Scholar 

  • Harrold JM, Straubinger RM, Mager DE (2012) Combinatorial chemotherapeutic efficacy in non-Hodgkin lymphoma can be predicted by a signaling model of CD20 pharmacodynamics. Cancer Res 72:1632–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40:iv–vii

    Google Scholar 

  • Jusko WJ (1971) Pharmacodynamics of chemotherapeutic effects: Dose-time–response relationships for phase-nonspecific agents. J Pharm Sci 60:892–895

    Article  CAS  PubMed  Google Scholar 

  • Jusko WJ (1989) Pharmacokinetics of capacity-limited pharmacokinetic systems. J Clin Pharmacol 29:488–493

    Article  CAS  PubMed  Google Scholar 

  • Jusko WJ (2013) Moving from basic toward systems pharmacodynamics models. J Pharm Sci 102:2930–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jusko WJ, Ko HC (1994) Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin Pharmacol Ther 56:406–419

    Article  CAS  PubMed  Google Scholar 

  • Kenakin TP (1997) Pharmacologic analysis of drug-receptor interaction, 3rd edn. Raven Press, New York

    Google Scholar 

  • Krzyzanski W, Chakraborty A, Jusko WJ (2000a) Algorithm for application of Fourier analysis for biorhythmic baselines of pharmacodynamic indirect response models. Chronobiol Internat 17:77–93

    Article  CAS  Google Scholar 

  • Krzyzanski W, Ramakrishnan R, Jusko WJ (2000b) Basic pharmacodynamic models for agents which alter production of natural cells. J Pharmacokin Biopharm 27:467–489

    Article  Google Scholar 

  • Krzyzanski W, Jusko WJ (2001) Indirect pharmacodynamic models for responses with multicompartmental distribution or polyexponential disposition. J Pharmacokin Pharmacodyn 28:57–78

    Article  CAS  Google Scholar 

  • Krzyzanski W, Dmochowski J, Matsushima N, Jusko WJ (2006) Assessment of dosing impact on intra-individual variability in estimation of parameters for basic indirect response models. J Pharmacokin Pharmacodyn 33:635–655

    Article  Google Scholar 

  • Lepist E-I, Jusko WJ (2004) Modeling and allometric scaling of s(+)ketoprofen pharmacokinetics and pharmacodynamics: a retrospective analysis. J Vet Pharmacol Ther 27:211–218

    Article  CAS  PubMed  Google Scholar 

  • Levy G (1966) Kinetics of pharmacologic effects. Clin Pharmacol Ther 7:362–372

    Article  CAS  PubMed  Google Scholar 

  • Levy G (1994) Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 56:248–252

    Article  CAS  PubMed  Google Scholar 

  • Loewe S, Muischnek H (1926) Effect of combinations: mathematical basis of the problem. Arch Exp Pathol Pharmakol 114:313–326

    Article  CAS  Google Scholar 

  • Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokin Biopharm 28:507–532

    Article  CAS  Google Scholar 

  • Mager DE, Jusko WJ (2008) Development of translational pharmacokinetic-pharmacodynamic models. Clin Pharmacol Ther 83:909–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug Met Disp 31:510–518

    Article  CAS  Google Scholar 

  • Mandema JW, Tukker E, Danhof M (1992) In vivo characterization of the pharmacodynamic interaction of a benzodiazepine agonist and antagonist: midazolam and flumazenil. J Pharmacol Exp Ther 260:36–44

    CAS  PubMed  Google Scholar 

  • Meagher AK, Forrest A, Dahhoff A, Stass H, Schentag JJ (2004) Novel pharmacokinetic-pharmacodynamic model for prediction of outcomes with an extended-release formulation of ciprofloxacin. Antimicrob Agents Chemother 48:2061–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–369

    CAS  Google Scholar 

  • Mishina EV, Jusko WJ (1994) Inhibition of rat splenocyte proliferation with methylprednisolone: in vivo effect of liposomal formulation. Pharm Res 11:848–854

    Article  CAS  PubMed  Google Scholar 

  • Mould DR, Denman NG, Duffull S (2007) Using disease progression models as a tool to detect drug effect. Clin Pharmacol Ther 82:81–86

    Article  CAS  PubMed  Google Scholar 

  • Nagashima R, O’Reilly RA, Levy G (1969) Kinetics of pharmacologic effects in man: the anticoagulant action of warfarin. Clin Pharmacol Ther 10:22–35

    Article  CAS  PubMed  Google Scholar 

  • Renkin EM (1979) Relation of capillary morphology to transport of fluid and large molecules. Acta Physiol Scand Suppl 463:81–91

    CAS  PubMed  Google Scholar 

  • Robertson TB (1923) The chemical basis of growth and senescence, Lippincott, Philidelphia

    Google Scholar 

  • Rowland M, Benet L, Graham C (1973) Clearance concepts in pharmacokinetics. J Pharmacokin Biopharm 1:123–136

    Article  CAS  Google Scholar 

  • Shannon JA (1939) Renal tubular excretion. Physiol Rev 19:63–93

    Google Scholar 

  • Sharma A, Ebling WF, Jusko WJ (1998) Precursor-dependent indirect pharmacodynamic response model for tolerance and rebound phenomena. J Pharm Sci 87:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Shimada S, Nakajima Y, Yamamoto K, Sawada Y, Iga T (1996) Comparative pharmacodynamics of eight calcium channel blocking agents in Japanese essential hypertensive patients. Biol Pharm Bull 19:430–437

    Article  CAS  PubMed  Google Scholar 

  • Starling EH (1896) On the absorption of fluids from connective tissue spaces. J Physiol 19:312–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stec GP, Atkinson AJ (1981) Analysis of the contributions of permeability and flow to intercompartmental clearance. J Pharmacokin Biopharm 9:167–180

    Article  CAS  Google Scholar 

  • Sukumaran S, Lepist E-I, DuBois DC, Almon RR, Jusko WJ (2012) Pharmacokinetic/pharmacodynamic modeling of methylprednisolone effects on iNOS mRNA expression and nitric oxide during LPS-induced inflammation in rats. Pharm Res 29:2060–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y-N, Jusko WJ (1998) Transit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics. J Pharm Sci 87:732–737

    Article  CAS  PubMed  Google Scholar 

  • Swinney DC (2009) The role of binding kinetics in therapeutically useful drug action. Curr Opin Drug Discov Devel 12:31–39

    CAS  PubMed  Google Scholar 

  • Teorell T (1937) Kinetics of distribution of substances administered to the body. II. The intravascular modes of administration. Arch Int Pharmacodyn Ther 57:226–240

    CAS  Google Scholar 

  • Wilkinson G, Shand D (1975) A physiologic approach to hepatic drug clearance. Clin Pharmacol Ther 18:377–390

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Abe M, Katashima M, Yamada Y, Sawada Y, Iga T (1996) Pharmacodynamic analysis of antiplatelet effect of aspirin in the literature—modeling based on inhibition of cyclooxygenase in the platelet and the vessel wall endothelium. Jpn J Hosp Pharm 22:133–141

    Article  CAS  Google Scholar 

  • Yao Z, Krzyzanski W, Jusko WJ (2006) Assessment of basic indirect response models with physiological limits. J Pharmacokin Pharmacodyn 33:167–193

    Article  Google Scholar 

  • Zhi JG, Nightingale CH, Quintiliani R (1988) Microbial pharmacodynamics of piperacillin in neutropenic mice of systematic infection due to Pseudomonas aeruginosa. J Pharmacokinet Biopharm 16:355–375

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grants GM 24211 and GM 57980 and by the University at Buffalo Center of Excellence in Pharmacokinetics and Pharmacodynamics. Technical assistance was provided by Mrs. Suzette Mis. The author greatly appreciates the mentorship and friendship of Gerhard Levy, deemed the “Father of Pharmacodynamics”, for his seminal contributions in recognizing concepts and models for simple direct drug effects (Levy 1966), indirect responses (Nagashima et al. 1969), target-mediated drug disposition (Levy 1994), and many other aspects of PK/PD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Jusko, W.J. (2016). Foundations of Pharmacodynamic Systems Analysis. In: Mager, D., Kimko, H. (eds) Systems Pharmacology and Pharmacodynamics. AAPS Advances in the Pharmaceutical Sciences Series, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-44534-2_8

Download citation

Publish with us

Policies and ethics